Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

CozE is a member of the MreCD complex that directs cell elongation in Streptococcus pneumoniae

An Erratum to this article was published on 23 January 2017

This article has been updated

Abstract

Most bacterial cells are surrounded by a peptidoglycan cell wall that is essential for their integrity. The major synthases of this exoskeleton are called penicillin-binding proteins (PBPs)1,2. Surprisingly little is known about how cells control these enzymes, given their importance as drug targets. In the model Gram-negative bacterium Escherichia coli, outer membrane lipoproteins are critical activators of the class A PBPs (aPBPs)3,4, bifunctional synthases capable of polymerizing and crosslinking peptidoglycan to build the exoskeletal matrix1. Regulators of PBP activity in Gram-positive bacteria have yet to be discovered but are likely to be distinct due to the absence of an outer membrane. To uncover Gram-positive PBP regulatory factors, we used transposon-sequencing (Tn-Seq)5 to screen for mutations affecting the growth of Streptococcus pneumoniae cells when the aPBP synthase PBP1a was inactivated. Our analysis revealed a set of genes that were essential for growth in wild-type cells yet dispensable when pbp1a was deleted. The proteins encoded by these genes include the conserved cell wall elongation factors MreC and MreD2,6,7, as well as a membrane protein of unknown function (SPD_0768) that we have named CozE (coordinator of zonal elongation). Our results indicate that CozE is a member of the MreCD complex of S. pneumoniae that directs the activity of PBP1a to the midcell plane where it promotes zonal cell elongation and normal morphology. CozE homologues are broadly distributed among bacteria, suggesting that they represent a widespread family of morphogenic proteins controlling cell wall biogenesis by the PBPs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The essential genes cozE and mreCD can be deleted in cells lacking PBP1a.
Figure 2: Expression of PBP1a in cells lacking cozE or mreC leads to growth arrest, aberrant morphologies and lysis.
Figure 3: PBP1a-dependent PG synthesis is delocalized in the absence of CozE or MreC.
Figure 4: CozE is a member of the MreCD cell elongation complex.

Similar content being viewed by others

Change history

  • 14 July 2017

    In the PDF version of this article previously published, the year of publication provided in the footer of each page and in the 'How to cite' section was erroneously given as 2017, it should have been 2016. This error has now been corrected. The HTML version of the article was not affected.

References

  1. Lovering, A. L., Safadi, S. S. & Strynadka, N. C. J. Structural perspective of peptidoglycan biosynthesis and assembly. Annu. Rev. Biochem. 81, 451–478 (2012).

    Article  CAS  Google Scholar 

  2. Typas, A., Banzhaf, M., Gross, C. A. & Vollmer, W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat. Rev. Microbiol. 10, 123–136 (2011).

    Article  Google Scholar 

  3. Typas, A. et al. Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell 143, 1097–1109 (2010).

    Article  CAS  Google Scholar 

  4. Paradis-bleau, C. et al. Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases. Cell 143, 1110–1120 (2011).

    Article  Google Scholar 

  5. van Opijnen, T., Bodi, K. L. & Camilli, A. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat. Methods 6, 767–772 (2009).

    Article  CAS  Google Scholar 

  6. Pinho, M. G., Kjos, M. & Veening, J.-W. How to get (a)round: mechanisms controlling growth and division of coccoid bacteria. Nat. Rev. Microbiol. 11, 601–614 (2013).

    Article  CAS  Google Scholar 

  7. Land, A. D. & Winkler, M. E. The requirement for pneumococcal MreC and MreD is relieved by inactivation of the gene encoding PBP1a. J. Bacteriol. 193, 4166–4179 (2011).

    Article  CAS  Google Scholar 

  8. Hakenbeck, R. Discovery of β-lactam-resistant variants in diverse pneumococcal populations. Genome Med. 6, 72 (2014).

    Article  Google Scholar 

  9. Paik, J., Kern, I., Lurz, R. & Hakenbeck, R. Mutational analysis of the Streptococcus pneumoniae bimodular class A penicillin-binding proteins. J. Bacteriol. 181, 3852–3856 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gawronski, J. D., Wong, S. M. S., Giannoukos, G., Ward, D. V. & Akerley, B. J. Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc. Natl Acad. Sci. USA 106, 16422–16427 (2009).

    Article  CAS  Google Scholar 

  11. Langridge, G. C. et al. Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res. 19, 2308–2316 (2009).

    Article  CAS  Google Scholar 

  12. Job, V., Carapito, R., Vernet, T., Dessen, A. & Zapun, A. Common alterations in PBP1a from resistant Streptococcus pneumoniae decrease its reactivity toward β-lactams: structural insights. J. Biol. Chem. 283, 4886–4894 (2008).

    Article  CAS  Google Scholar 

  13. van Opijnen, T. & Camilli, A. A fine scale phenotype–genotype virulence map of a bacterial pathogen. Genome Res. 22, 2541–2551 (2012).

    Article  CAS  Google Scholar 

  14. Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2015).

    Article  Google Scholar 

  15. Tsui, H. C. T. et al. Suppression of a deletion mutation in the gene encoding essential PBP2b reveals a new lytic transglycosylase involved in peripheral peptidoglycan synthesis in Streptococcus pneumoniae D39. Mol. Microbiol. 100, 1039–1065 (2016).

    Article  CAS  Google Scholar 

  16. Kloosterman, T. G., van der Kooi-Pol, M. M., Bijlsma, J. J. E. & Kuipers, O. P. The novel transcriptional regulator SczA mediates protection against Zn2+ stress by activation of the Zn2+-resistance gene czcD in Streptococcus pneumoniae. Mol. Microbiol. 65, 1049–1063 (2007).

    Article  CAS  Google Scholar 

  17. Lanie, J. A. et al. Genome sequence of Avery's virulent serotype 2 strain D39 of Streptococcus pneumoniae and comparison with that of unencapsulated laboratory strain R6. J. Bacteriol. 189, 38–51 (2007).

    Article  CAS  Google Scholar 

  18. Rice, K. C. & Bayles, K. W. Molecular control of bacterial death and lysis. Microbiol. Mol. Biol. Rev. 72, 85–109 (2008).

    Article  CAS  Google Scholar 

  19. Guiral, S., Mitchell, T. J., Martin, B. & Claverys, J.-P. Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: genetic requirements. Proc. Natl Acad. Sci. USA 102, 8710–8715 (2005).

    Article  CAS  Google Scholar 

  20. Boersma, M. J. et al. Minimal peptidoglycan (PG) turnover in wild-type and PG hydrolase and cell division mutants of Streptococcus pneumoniae D39 growing planktonically and in host-relevant biofilm. J. Bacteriol. 197, 3472–3485 (2015).

    Article  CAS  Google Scholar 

  21. Kuru, E. et al. In situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent d-amino acids. Angew. Chem. Int. Ed. 51, 12519–12523 (2012).

    Article  CAS  Google Scholar 

  22. Karimova, G., Pidoux, J., Ullmann, A. & Ladant, D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl Acad. Sci. USA 95, 5752–5756 (1998).

    Article  CAS  Google Scholar 

  23. Kruse, T., Bork-Jensen, J. & Gerdes, K. The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex. Mol. Microbiol. 55, 78–89 (2005).

    Article  CAS  Google Scholar 

  24. Jones, L. J. F., Carballido-López, R. & Errington, J. Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104, 913–922 (2001).

    Article  CAS  Google Scholar 

  25. Tsui, H.-C. T. et al. Pbp2x localizes separately from Pbp2b and other peptidoglycan synthesis proteins during later stages of cell division of Streptococcus pneumoniae D39. Mol. Microbiol. 94, 21–40 (2014).

    Article  CAS  Google Scholar 

  26. Meeske, A. J. et al. SEDS proteins are a widespread family of bacterial cell wall polymerases. Nature 537, 634–638 (2016).

    Article  CAS  Google Scholar 

  27. Cho, H. et al. Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously. Nat. Microbiol. 1, 16172 (2016).

    Article  CAS  Google Scholar 

  28. Varma, A., de Pedro, M. A. & Young, K. D. FtsZ directs a second mode of peptidoglycan synthesis in Escherichia coli. J. Bacteriol. 189, 5692–5704 (2007).

    Article  CAS  Google Scholar 

  29. de Pedro, M. A., Quintela, J. C., Höltje, J. V. & Schwarz, H. Murein segregation in Escherichia coli. J. Bacteriol. 179, 2823–2834 (1997).

    Article  CAS  Google Scholar 

  30. Aaron, M. et al. The tubulin homologue FtsZ contributes to cell elongation by guiding cell wall precursor synthesis in Caulobacter crescentus. Mol. Microbiol. 64, 938–952 (2007).

    Article  CAS  Google Scholar 

  31. Hoskins, J. et al. Genome of the bacterium Streptococcus pneumoniae strain R6. J. Bacteriol. 183, 5709–5717 (2001).

    Article  CAS  Google Scholar 

  32. Avery, O. T., MacLeod, C. M. & McCarty, M. Studies on the chemical nature of the substance inducing of transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus type III. J. Exp. Med. 79, 137–158 (1944).

    Article  CAS  Google Scholar 

  33. Robertson, G. T., Ng, W. L., Foley, J., Gilmour, R. & Winkler, M. E. Global transcriptional analysis of clpP mutations of type 2 Streptococcus pneumoniae and their effects on physiology and virulence. J. Bacteriol. 184, 3508–3520 (2002).

    Article  CAS  Google Scholar 

  34. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  Google Scholar 

  35. Hava, D. L., Hemsley, C. J. & Camilli, A. Transcriptional regulation in the Streptococcus pneumoniae rlrA pathogenicity islet by RlrA. J. Bacteriol. 185, 413–421 (2003).

    Article  CAS  Google Scholar 

  36. Sung, C. K., Li, H., Claverys, J. P. & Morrison, D. A. An rpsL cassette, janus, for gene replacement through negative selection in Streptococcus pneumoniae. Appl. Environ. Microbiol. 67, 5190–5196 (2001).

    Article  CAS  Google Scholar 

  37. Eberhardt, A., Wu, L. J., Errington, J., Vollmer, W. & Veening, J. W. Cellular localization of choline-utilization proteins in Streptococcus pneumoniae using novel fluorescent reporter systems. Mol. Microbiol. 74, 395–408 (2009).

    Article  CAS  Google Scholar 

  38. Lemon, K. P. & Grossman, A. D. Localization of bacterial DNA polymerase: evidence for a factory model of replication. Science 282, 1516–1519 (1998).

    Article  CAS  Google Scholar 

  39. Sung, M.-T. et al. Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli. Proc. Natl Acad. Sci. USA 106, 8824–8829 (2009).

    Article  CAS  Google Scholar 

  40. Chan, P. F. et al. Characterization of a novel fucose-regulated promoter (PfcsK) suitable for gene essentiality and antibacterial mode-of-action studies in Streptococcus pneumoniae. J. Bacteriol. 185, 2051–2058 (2003).

    Article  CAS  Google Scholar 

  41. Bendezú, F. O., Hale, C. A., Bernhardt, T. G. & de Boer, P. A. J. Rodz (YfgA) is required for proper assembly of the MreB actin cytoskeleton and cell shape in E. coli. EMBO J. 28, 193–204 (2009).

    Article  Google Scholar 

  42. Lampe, D. J., Akerley, B. J., Rubin, E. J., Mekalanos, J. J. & Robertson, H. M. Hyperactive transposase mutants of the Himar1 mariner transposon. Proc. Natl Acad. Sci. USA 96, 11428–11433 (1999).

    Article  CAS  Google Scholar 

  43. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  Google Scholar 

  44. Carver, T., Harris, S. R., Berriman, M., Parkhill, J. & McQuillan, J. A. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28, 464–469 (2012).

    Article  CAS  Google Scholar 

  45. Letunic, I. & Bork, P. Interactive Tree of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–128 (2007).

    Article  CAS  Google Scholar 

  46. Meisner, J. et al. FtsEX is required for CwlO peptidoglycan hydrolase activity during cell wall elongation in Bacillus subtilis. Mol. Microbiol. 89, 1069–1083 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all members of the Bernhardt and Rudner laboratories for support and comments. A. Fenton was a jointly mentored postdoctoral fellow bridging work in both laboratories. The authors thank R. Yunck, H. Kimsey, M. Winkler, T. van Opijnen, A. Camilli, N. Campo, J.-W. Veening, T. Vernet and D. Morrison for strains, reagents and technical assistance. This work was supported by the National Institutes of Health (R01AI083365 to T.G.B., CETR U19 AI109764 to T.G.B. and D.Z.R., GM073831 to D.Z.R. and RC2 GM092616 to D.Z.R.).

Author information

Authors and Affiliations

Authors

Contributions

A.K.F. performed all experiments, designed part of the experimental programme and co-authored the manuscript. L.E.M. carried out essential pilot experiments for the project. D.T.C.L. helped adopt the Tn-seq data analysis pipeline and proofread the manuscript. D.Z.R. and T.G.B. co-supervised the project and co-authored the manuscript.

Corresponding authors

Correspondence to David Z. Rudner or Thomas G. Bernhardt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1-17; Supplementary Tables 1-4; Supplementary References (PDF 18554 kb)

Supplementary Table 5

Raw Tn-seq analysis data for wt vs pbp1a (XLSX 120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fenton, A., El Mortaji, L., Lau, D. et al. CozE is a member of the MreCD complex that directs cell elongation in Streptococcus pneumoniae. Nat Microbiol 2, 16237 (2017). https://doi.org/10.1038/nmicrobiol.2016.237

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.237

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing