Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth

This article has been updated

Abstract

Bacteria growing under different conditions experience a broad range of demand on the rate of protein synthesis, which profoundly affects cellular resource allocation. During fast growth, protein synthesis has long been known to be modulated by adjusting the ribosome content, with the vast majority of ribosomes engaged at a near-maximal rate of elongation. Here, we systematically characterize protein synthesis by Escherichia coli, focusing on slow-growth conditions. We establish that the translational elongation rate decreases as growth slows, exhibiting a Michaelis–Menten dependence on the abundance of the cellular translational apparatus. However, an appreciable elongation rate is maintained even towards zero growth, including the stationary phase. This maintenance, critical for timely protein synthesis in harsh environments, is accompanied by a drastic reduction in the fraction of active ribosomes. Interestingly, well-known antibiotics such as chloramphenicol also cause a substantial reduction in the pool of active ribosomes, instead of slowing down translational elongation as commonly thought.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Characteristics of protein synthesis capacity under nutrient limitation.
Figure 2: Characteristics of protein synthesis capacity under translation limitation by Cm inhibition.
Figure 3: Growth-rate dependence of the active ribosome fraction.
Figure 4: Models for the reduction of the active ribosome fraction at slow growth.

Change history

  • 14 July 2017

    In the PDF version of this article previously published, the year of publication provided in the footer of each page and in the 'How to cite' section was erroneously given as 2017, it should have been 2016. This error has now been corrected. The HTML version of the article was not affected.

References

  1. 1

    Scott, M., Gunderson, C. W., Mateescu, E. M., Zhang, Z. & Hwa, T. Interdependence of cell growth and gene expression: origins and consequences. Science 330, 1099–1102 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Gerosa, L., Kochanowski, K., Heinemann, M. & Sauer, U. Dissecting specific and global transcriptional regulation of bacterial gene expression. Mol. Syst. Biol. 9, 658 (2013).

    Article  Google Scholar 

  3. 3

    Li, G.-W., Burkhardt, D., Gross, C. & Weissman, J. S. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157, 624–635 (2014).

    CAS  Article  Google Scholar 

  4. 4

    Hui, S. et al. Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Mol. Syst. Biol. 11, 784 (2015).

    Article  Google Scholar 

  5. 5

    You, C. et al. Coordination of bacterial proteome with metabolism by cyclic AMP signalling. Nature 500, 301–306 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Basan, M. et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528, 99–104 (2015).

    CAS  Article  Google Scholar 

  7. 7

    Maaløe, O. in Biological Regulation and Development (ed. Goldberger, R. F. ) 487–542 (Plenum, 1979).

    Book  Google Scholar 

  8. 8

    Neidhardt, F. C. & Magasanik, B. Studies on the role of ribonucleic acid in the growth of bacteria. Biochim. Biophys. Acta 42, 99–116 (1960).

    CAS  Article  Google Scholar 

  9. 9

    Dalbow, D. G. & Young, R. Synthesis time of β-galactosidase in Escherichia coli B/r as a function of growth rate. Biochem. J. 150, 13–20 (1975).

    CAS  Article  Google Scholar 

  10. 10

    Young, R. & Bremer, H. Polypeptide-chain-elongation rate in Escherichia coli B/r as a function of growth rate. Biochem. J. 160, 185–194 (1976).

    CAS  Article  Google Scholar 

  11. 11

    Pedersen, S. Escherichia coli ribosomes translate in vivo with variable rate. EMBO J. 3, 2895–2898 (1984).

    CAS  Article  Google Scholar 

  12. 12

    Klumpp, S., Scott, M., Pedersen, S. & Hwa, T. Molecular crowding limits translation and cell growth. Proc. Natl Acad. Sci. USA 110, 16754–16759 (2013).

    CAS  Article  Google Scholar 

  13. 13

    Ryals, J., Little, R. & Bremer, H. Control of rRNA and tRNA syntheses in Escherichia coli by guanosine tetraphosphate. J. Bacteriol. 151, 1261–1268 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Kolter, R., Siegele, D. A. & Tormo, A. The stationary phase of the bacterial life cycle. Annu. Rev. Microbiol. 47, 855–874 (1993).

    CAS  Article  Google Scholar 

  15. 15

    Koch, A. L. & Deppe, C. S. In vivo assay of protein synthesizing capacity of Escherichia coli from slowly growing chemostat cultures. J. Mol. Biol. 55, 549–562 (1971).

    CAS  Article  Google Scholar 

  16. 16

    Schleif, R., Hess, W., Finkelstein, S. & Ellis, D. Induction kinetics of the l-arabinose operon of Escherichia coli. J. Bacteriol. 115, 9–14 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Link, H., Fuhrer, T., Gerosa, L., Zamboni, N. & Sauer, U. Real-time metabolome profiling of the metabolic switch between starvation and growth. Nat. Methods 12, 1091–1097 (2015).

    CAS  Article  Google Scholar 

  18. 18

    Zhu, M., Dai, X. & Wang, Y. P. Real time determination of bacterial in vivo ribosome translation elongation speed based on LacZα complementation system. Nucleic Acids Res. http://dx.doi.org/10.1093/nar/gkw698 (2016).

  19. 19

    Basan, M. et al. Inflating bacterial cells by increased protein synthesis. Mol. Syst. Biol. 11, 836 (2015).

    Article  Google Scholar 

  20. 20

    Bremer, H. & Dennis, P. P. in Escherichia coli and Salmonella 2nd edn (ed. Neidhardt, F. C. ) 1553–1569 (American Society of Microbiology, 1996).

    Google Scholar 

  21. 21

    Neidhardt, F. C., Ingraham, J. L. & Schaechter, M. Physiology of the Bacterial Cell—A Molecular Approach (Sinauer Associates, 1990).

    Google Scholar 

  22. 22

    Harvey, R. J. & Koch, A. L. How partially inhibitory concentrations of chloramphenicol affect the growth of Escherichia coli. Antimicrob. Agents Chemother. 18, 323–337 (1980).

    CAS  Article  Google Scholar 

  23. 23

    Chopra, I. & Howe, T. G. Bacterial resistance to the tetracyclines. Microbiol. Rev. 42, 707–724 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Day, L. E. Tetracycline inhibition of cell-free protein synthesis. II. Effect of the binding of tetracycline to the components of the system. J. Bacteriol. 92, 197–203 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Pestka, S. Binding of [14C]erythromycin to Escherichia coli ribosomes. Antimicrob. Agents Chemother. 6, 474–478 (1974).

    CAS  Article  Google Scholar 

  26. 26

    Seo, H.-S. et al. EF-G-dependent GTPase on the ribosome. conformational change and fusidic acid inhibition. Biochemistry 45, 2504–2514 (2006).

    CAS  Article  Google Scholar 

  27. 27

    Okura, A., Kinoshita, T. & Tanaka, N. Formation of fusidic acid-G factor-GDP-ribosome complex and the relationship to the inhibition of GTP hydrolysis. J. Antibiot. 24, 655–661 (1971).

    CAS  Article  Google Scholar 

  28. 28

    Uemura, S. et al. Real-time tRNA transit on single translating ribosomes at codon resolution. Nature 464, 1012–1017 (2010).

    CAS  Article  Google Scholar 

  29. 29

    Hughes, J. & Mellows, G. Inhibition of isoleucyl-transfer ribonucleic acid synthetase in Escherichia coli by pseudomonic acid. Biochem. J. 176, 305–318 (1978).

    CAS  Article  Google Scholar 

  30. 30

    Dennis, P. P. Effects of chloramphenicol on the transcriptional activities of ribosomal RNA and ribosomal protein genes in Escherichia coli. J. Mol. Biol. 108, 535–546 (1976).

    CAS  Article  Google Scholar 

  31. 31

    Ehrenberg, M. & Kurland, C. G. Costs of accuracy determined by a maximal growth rate constraint. Q. Rev. Biophys. 17, 45–82 (1984).

    CAS  Article  Google Scholar 

  32. 32

    Zhang, G. et al. Global and local depletion of ternary complex limits translational elongation. Nucleic Acids Res. 38, 4778–4787 (2010).

    CAS  Article  Google Scholar 

  33. 33

    Dong, H., Nilsson, L. & Kurland, C. G. Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J. Mol. Biol. 260, 649–663 (1996).

    CAS  Article  Google Scholar 

  34. 34

    Johansson, M., Bouakaz, E., Lovmar, M. & Ehrenberg, M. The kinetics of ribosomal peptidyl transfer revisited. Mol. Cell 30, 589–598 (2008).

    CAS  Article  Google Scholar 

  35. 35

    Siibak, T. et al. Erythromycin- and chloramphenicol-induced ribosomal assembly defects are secondary effects of protein synthesis inhibition. Antimicrob. Agents Chemother. 53, 563–571 (2009).

    CAS  Article  Google Scholar 

  36. 36

    Polikanov, Y. S., Blaha, G. M. & Steitz, T. A. How hibernation factors RMF, HPF, and YfiA turn off protein synthesis. Science 336, 915–918 (2012).

    CAS  Article  Google Scholar 

  37. 37

    Sin, C., Chiarugi, D. & Valleriani, A. Quantitative assessment of ribosome drop-off in E. coli. Nucleic Acids Res. 44, 2528–2537 (2016).

    Article  Google Scholar 

  38. 38

    Forchhammer, J. & Lindahl, L. Growth rate of polypeptide chains as a function of the cell growth rate in a mutant of Escherichia coli 15. J. Mol. Biol. 55, 563–568 (1971).

    CAS  Article  Google Scholar 

  39. 39

    Harvey, R. J. Fraction of ribosomes synthesizing protein as a function of specific growth rate. J. Bacteriol. 114, 287–293 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Godson, G. N. & Sinsheimer, R. L. Use of Brij lysis as a general method to prepare polyribosomes from Escherichia coli. Biochim. Biophys. Acta 149, 489–495 (1967).

    CAS  Article  Google Scholar 

  41. 41

    Nath, K. & Koch, A. L. Protein degradation in Escherichia coli. I. Measurement of rapidly and slowly decaying components. J. Biol. Chem. 245, 2889–2900 (1970).

    CAS  PubMed  Google Scholar 

  42. 42

    Mandelstam, J. Turnover of protein in starved bacteria and its relationship to the induced synthesis of enzyme. Nature 179, 1179–1181 (1957).

    CAS  Article  Google Scholar 

  43. 43

    Milon, P. et al. The nucleotide-binding site of bacterial translation initiation factor 2 (IF2) as a metabolic sensor. Proc. Natl Acad. Sci. USA 103, 13962–13967 (2006).

    CAS  Article  Google Scholar 

  44. 44

    Hauser, R. et al. Rsfa (YbeB) proteins are conserved ribosomal silencing factors. PLoS Genet. 8, e1002815 (2012).

    Article  Google Scholar 

  45. 45

    Izutsu, K., Wada, A. & Wada, C. Expression of ribosome modulation factor (RMF) in Escherichia coli requires ppGpp. Genes Cells 6, 665–676 (2001).

    CAS  Article  Google Scholar 

  46. 46

    Shimizu, Y. Biochemical aspects of bacterial strategies for handling the incomplete translation processes. Front. Microbiol. 5, 170 (2014).

    Article  Google Scholar 

  47. 47

    Subramaniam, A. R., Zid, B. M. & O'Shea, E. K. An integrated approach reveals regulatory controls on bacterial translation elongation. Cell 159, 1200–1211 (2014).

    CAS  Article  Google Scholar 

  48. 48

    Dresden, M. H. & Hoagland, M. B. Polyribosomes of Escherichia coli. Re-formation during recovery from glucose starvation. J. Biol. Chem. 242, 1069–1073 (1967).

    CAS  PubMed  Google Scholar 

  49. 49

    Koch, A. L. The adaptive responses of Escherichia coli to a feast and famine existence. Adv. Microb. Physiol. 6, 147–217 (1971).

    CAS  Article  Google Scholar 

  50. 50

    Moore, S. D. & Sauer, R. T. Ribosome rescue: tmRNA tagging activity and capacity in Escherichia coli. Mol. Microbiol. 58, 456–466 (2005).

    CAS  Article  Google Scholar 

  51. 51

    Soupene, E. et al. Physiological studies of Escherichia coli strain MG1655: growth defects and apparent cross-regulation of gene expression. J. Bacteriol. 185, 5611–5626 (2003).

    CAS  Article  Google Scholar 

  52. 52

    Lyons, E., Freeling, M., Kustu, S. & Inwood, W. Using genomic sequencing for classical genetics in E. coli K12. PLoS ONE 6, e16717 (2011).

    CAS  Article  Google Scholar 

  53. 53

    Steinsiek, S. & Bettenbrock, K. Glucose transport in Escherichia coli mutant strains with defects in sugar transport systems. J. Bacteriol. 194, 5897–5908 (2012).

    CAS  Article  Google Scholar 

  54. 54

    Langley, K. E., Villarejo, M. R., Fowler, A. V., Zamenhof, P. J. & Zabin, I. Molecular basis of beta-galactosidase alpha-complementation. Proc. Natl Acad. Sci. USA 72, 1254–1257 (1975).

    CAS  Article  Google Scholar 

  55. 55

    Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    CAS  Article  Google Scholar 

  56. 56

    Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25, 1203–1210 (1997).

    CAS  Article  Google Scholar 

  57. 57

    Morris, D. R. & Hansen, M. T. Influence of polyamine limitation on the chain growth rate of beta-galactosidase and of its messenger ribonucleic acid. J. Bacteriol. 116, 588–592 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Cayley, S., Lewis, B. A., Guttman, H. J. & Record, M. T. Jr. Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity. Implications for protein–DNA interactions in vivo. J. Mol. Biol. 222, 281–300 (1991).

    CAS  Article  Google Scholar 

  59. 59

    Neidhardt, F. C., Bloch, P. L. & Smith, D. F. Culture medium for enterobacteria. J. Bacteriol. 119, 736–747 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Andersson, D. I., Bohman, K., Isaksson, L. A. & Kurland, C. G. Translation rates and misreading characteristics of rpsD mutants in Escherichia coli. Mol. Gen. Genet. 187, 467–472 (1982).

    CAS  Article  Google Scholar 

  61. 61

    Miller, J. H. Experiments in Molecular Genetics (Cold Spring Harbor Laboratory, 1972).

    Google Scholar 

  62. 62

    Vidal-Aroca, F. et al. One-step high-throughput assay for quantitative detection of β-galactosidase activity in intact Gram-negative bacteria, yeast, and mammalian cells. Biotechniques 40, 433–440, 436, 438 passim (2006).

    CAS  Article  Google Scholar 

  63. 63

    Martin, L., Che, A. & Endy, D. Gemini, a bifunctional enzymatic and fluorescent reporter of gene expression. PLoS ONE 4, e7569 (2009).

    Article  Google Scholar 

  64. 64

    Janssen, B. D., Diner, E. J. & Hayes, C. S. Analysis of aminoacyl- and peptidyl-tRNAs by gel electrophoresis. Methods Mol. Biol. 905, 291–309 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Balakrishnan, R., Oman, K., Shoji, S., Bundschuh, R. & Fredrick, K. The conserved GTPase LepA contributes mainly to translation initiation in Escherichia coli. Nucleic Acids Res. 42, 13370–13383 (2014).

    CAS  Article  Google Scholar 

  66. 66

    Qin, D. & Fredrick, K. Analysis of polysomes from bacteria. Methods Enzymol. 530, 159–172 (2013).

    CAS  Article  Google Scholar 

  67. 67

    Deutsh, E. W. et al. A guided tour of the trans-proteomic pipeline. Proteomics 10, 1150–1159 (2010).

    Article  Google Scholar 

  68. 68

    Craig, R. & Beavis, R. C. TANDEM matching proteins with tandem mass spectra. Bioinformatics 20, 1466–1467 (2004).

    CAS  Article  Google Scholar 

  69. 69

    Lam, H. et al. Building consensus spectral libraries for peptide identification in proteomics. Nat. Methods 5, 873–875 (2008).

    CAS  Article  Google Scholar 

  70. 70

    Sperling, E., Bunner, A. E., Sykes, M. T. & Williamson, J. R. Quantitative analysis of isotope distributions in proteomic mass spectrometry using least-square Fourier transform convolution. Anal. Chem. 80, 4906–4917 (2008).

    CAS  Article  Google Scholar 

  71. 71

    Sykes, M. T., Sperling, E., Chen, S. S. & Williamson, J. R. Quantitation of the ribosomal protein autoregulatory network using mass spectrometry. Anal. Chem. 82, 5038–5045 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for discussions with numerous colleagues including Z. Ignatova, S. Klumpp, S. Pedersen, S. Schink, J. Silverman, M. Scott, R. Young and members of the Hwa laboratory at various stages of this work. This research is supported by NIH grant R01GM109069 (to T.H.) and grant 31530081 of the National Natural Science Fund of the People's Republic of China (NSFC; to Y.P.W.). K.F. acknowledges support from NIH grant R01GM072528. J.R.W. acknowledges NIH grant GM118850. M.Z. acknowledges financial support from the China Scholarship Council (CSC; 201306010039).

Author information

Affiliations

Authors

Contributions

X.D., M.Z., M.W. and T.H. designed the study. X.D., M.Z., R.B. and V.P. performed experiments. X.D., M.Z., M.W., H.O., V.P., J.R.W., K.F., Y.-P.W. and T.H. analysed the data. X.D., M.Z., M.W., Y.-P.W. and T.H. wrote the paper and the Supplementary Information.

Corresponding authors

Correspondence to Yi-Ping Wang or Terence Hwa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Notes 1–5, Supplementary Tables 1–12, Supplementary Figures 1–20, Supplementary References (PDF 4670 kb)

Supplementary Table 9

Proteome abundances of individual r-proteins under nutrient limitation and Cm inhibition. (XLSX 48 kb)

Supplementary Table 10

Proteome abundance of individual r-proteins of the reference condition. (XLSX 64 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dai, X., Zhu, M., Warren, M. et al. Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth. Nat Microbiol 2, 16231 (2017). https://doi.org/10.1038/nmicrobiol.2016.231

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing