Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Self-organized patchiness facilitates survival in a cooperatively growing Bacillus subtilis population


Ecosystems are highly structured. Organisms are not randomly distributed but can be found in spatial aggregates at many scales, leading to spatial heterogeneity or even regular patterns1. The widespread occurrence of these aggregates in many different ecosystems suggests that generic factors intrinsic to the populations—such as interactions between the organisms—play a major role in their emergence1,2. Beyond the emergence of spatial patchiness, its functional consequences remain unclear. Here we show in Bacillus subtilis that cooperative interactions in a spatial environment are sufficient to form self-organized patches. These patches allow for survival even when the microbe density is too low to sustain growth in a well-mixed environment. Decreasing cell mobility leads to more compact patches that enhance this survival advantage but also reduce the overall growth. Our results highlight that even populations lacking specific group-forming mechanisms can nonetheless form spatial patterns that allow for group survival in challenging environments.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cooperative growth in a spatial environment leads to formation of patches.
Figure 2: Self-organized patches allow bacteria to survive lower starting cell densities.
Figure 3: Reaction-diffusion model describes pattern formation.
Figure 4: Trade-off between survival and growth.


  1. Rietkerk, M. & van de Koppel, J. Regular pattern formation in real ecosystems. Trends Ecol. Evol. 23, 169–175 (2008).

    Article  Google Scholar 

  2. Klausmeier, C. A. Regular and irregular patterns in semiarid vegetation. Science 284, 1826–1828 (1999).

    Article  CAS  Google Scholar 

  3. Finlay, B. J. Global dispersal of free-living microbial eukaryote species. Science 296, 1061–1063 (2002).

    Article  CAS  Google Scholar 

  4. Horner-Devine, M. C., Lage, M., Hughes, J. B. & Bohannan, B. J. M. A taxa–area relationship for bacteria. Nature 432, 750–753 (2004).

    Article  CAS  Google Scholar 

  5. Martiny, J. B. H. et al. Microbial biogeography: putting microorganisms on the map. Nature Rev. Microbiol. 4, 102–112 (2006).

    Article  CAS  Google Scholar 

  6. Doemel, W. N. & Brock, T. D. Structure, growth, and decomposition of laminated algal-bacterial mats in alkaline hot springs. Appl. Environ. Microbiol. 34, 433–452 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dupraz, C. & Visscher, P. T. Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol. 13, 429–438 (2005).

    Article  CAS  Google Scholar 

  8. Michaelis, W. et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297, 1013–1015 (2002).

    Article  CAS  Google Scholar 

  9. Foster, D. R., King, G. A., Glaser, P. H. & Wright, H. E. Origin of string patterns in boreal peatlands. Nature 306, 256–258 (1983).

    Article  Google Scholar 

  10. Dakos, V., Kéfi, S., Rietkerk, M., van Nes, E. H. & Scheffer, M. Slowing down in spatially patterned ecosystems at the brink of collapse. Am. Nat. 177, E153–E166 (2011).

    Article  Google Scholar 

  11. Scanlon, T. M., Caylor, K. K., Levin, S. A. & Rodriguez-Iturbe, I. Positive feedbacks promote power-law clustering of Kalahari vegetation. Nature 449, 209–212 (2007).

    Article  CAS  Google Scholar 

  12. Rietkerk, M. et al. Self-organization of vegetation in arid ecosystems. Am. Nat. 160, 524–530 (2002).

    PubMed  Google Scholar 

  13. Levin, S. & Segel, L. Pattern generation in space and aspect. SIAM Rev. 27, 45–67 (1985).

    Article  Google Scholar 

  14. West, S. A., Diggle, S. P., Buckling, A., Gardner, A. & Griffin, A. S. The social lives of microbes. Annu. Rev. Ecol. Evol. Syst. 38, 53–77 (2007).

    Article  Google Scholar 

  15. Parrish, J. K. & Edelstein-Keshet, L. Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284, 99–101 (1999).

    Article  CAS  Google Scholar 

  16. Konsula, Z. & Liakopoulou-Kyriakides, M. Hydrolysis of starches by the action of an α-amylase from Bacillus subtilis. Process Biochem. 39, 1745–1749 (2004).

    Article  CAS  Google Scholar 

  17. Courchamp, F., Clutton-Brock, T. & Grenfell, B. Inverse density dependence and the Allee effect. Trends Ecol. Evol. 14, 405–410 (1999).

    Article  CAS  Google Scholar 

  18. Allee, W. C., Park, O., Emerson, A. E., Park, T. & Schmidt, K. P. Principles of Animal Ecology (1949).

  19. Kearns, D. B. & Losick, R. Swarming motility in undomesticated Bacillus subtilis. Mol. Microbiol. 49, 581–590 (2003).

    Article  CAS  Google Scholar 

  20. Bonner, J. T. & Savage, L. J. Evidence for the formation of cell aggregates by chemotaxis in the development of the slime mold Dictyostelium discoideum. J. Exp. Zool. 106, 1–26 (1947).

    Article  CAS  Google Scholar 

  21. Schochet, O. & Ben-Jacob, E. Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368, 46–49 (1994).

    Article  Google Scholar 

  22. Wolfe, A. J. & Berg, H. C. Migration of bacteria in semisolid agar. Proc. Natl Acad. Sci. 86, 6973–6977 (1989).

    Article  CAS  Google Scholar 

  23. Schantz, E. J. & Lauffer, M. A. Diffusion measurements in agar gel. Biochemistry (Mosc.) 1, 658–663 (1962).

    Article  CAS  Google Scholar 

  24. Yu, J., Xiao, J., Ren, X., Lao, K. & Xie, X. S. Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600–1603 (2006).

    Article  CAS  Google Scholar 

  25. Fisher, R. A. The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937).

    Article  Google Scholar 

  26. Turing, A. M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 237, 37–72 (1952).

    Article  Google Scholar 

  27. Jefferson, K. K. What drives bacteria to produce a biofilm? FEMS Microbiol. Lett. 236, 163–173 (2004).

    Article  CAS  Google Scholar 

  28. Drescher, K., Nadell, C. D., Stone, H. A., Wingreen, N. S. & Bassler, B. L. Solutions to the public goods dilemma in bacterial biofilms. Curr. Biol. 24, 50–55 (2014).

    Article  CAS  Google Scholar 

  29. Hamilton, W. D. & May, R. M. Dispersal in stable habitats. Nature 269, 578–581 (1977).

    Article  Google Scholar 

  30. Smith, R. et al. Programmed Allee effect in bacteria causes a tradeoff between population spread and survival. Proc. Natl Acad. Sci. 111, 1969–1974 (2014).

    Article  CAS  Google Scholar 

  31. Hammer, B. K. & Bassler, B. L. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol. Microbiol. 50, 101–104 (2003).

    Article  CAS  Google Scholar 

  32. Nguyen, A. W. & Daugherty, P. S. Evolutionary optimization of fluorescent proteins for intracellular FRET. Nature Biotechnol. 23, 355–360 (2005).

    Article  CAS  Google Scholar 

  33. Radeck, J. et al. The Bacillus BioBrick Box: generation and evaluation of essential genetic building blocks for standardized work with Bacillus subtilis. J. Biol. Eng. 7, 29 (2013).

    Article  Google Scholar 

  34. Doan, T., Marquis, K. A. & Rudner, D. Z. Subcellular localization of a sporulation membrane protein is achieved through a network of interactions along and across the septum. Mol. Microbiol. 55, 1767–1781 (2005).

    Article  CAS  Google Scholar 

  35. Harwood, C. R. & Cutting, S. M. Molecular Biological Methods for Bacillus (Wiley, 1990).

    Google Scholar 

Download references


We thank D. Kearns, D. Rudner and J. Radeck for generously providing us with strains and plasmids. We thank T. Hugel, I. Bischofs, A. Deutsch, I. Couzin and E. Frey for helpful discussion and all members of the Gore lab for critical reading and discussion of the manuscript. This work was funded by an Allen Distinguished Investigator Award, NSF CAREER Award and NIH New Innovator Award. J.G. is a Pew Scholar in the Biomedical Sciences and a Sloan Fellow.

Author information

Authors and Affiliations



C.R and J.G. designed the research. C.R. performed the research. C.R. and J.G. wrote the manuscript.

Corresponding authors

Correspondence to Christoph Ratzke or Jeff Gore.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Discussion, Figures 1–24 and References (PDF 2245 kb)

Supplementary Video 1

This video is related to Supplementary Fig. 6. At low agar concentrations (0.22%) in the presence of 0.2% fumarate as a carbon source the bacteria are highly mobile. (MP4 336 kb)

Supplementary Video 2

This video is related to Supplementary Fig. 6. At high agar concentrations (1%) in the presence of 0.2% fumarate as a carbon source the bacteria are stalled. (MP4 56 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratzke, C., Gore, J. Self-organized patchiness facilitates survival in a cooperatively growing Bacillus subtilis population. Nat Microbiol 1, 16022 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing