Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An essential role for bacterial nitric oxide synthase in Staphylococcus aureus electron transfer and colonization

This article has been updated

Abstract

Nitric oxide (NO) is a ubiquitous molecular mediator in biology. Many signalling actions of NO generated by mammalian NO synthase (NOS) result from targeting of the haem moiety of soluble guanylate cyclase. Some pathogenic and environmental bacteria also produce a NOS that is evolutionary related to the mammalian enzymes, but a bacterial haem-containing receptor for endogenous enzymatically generated NO has not been identified previously. Here, we show that NOS of the human pathogen Staphylococcus aureus, in concert with an NO-metabolizing flavohaemoprotein, regulates electron transfer by targeting haem-containing cytochrome oxidases under microaerobic conditions to maintain membrane bioenergetics. This process is essential for staphylococcal nasal colonization and resistance to the membrane-targeting antibiotic daptomycin and demonstrates the conservation of NOS-derived NO-haem receptor signalling between bacteria and mammals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Regulation of O2 respiration by saNOS.
Figure 2: Delayed induction of SrrAB-regulated genes and nitrate respiration in the absence of saNOS.
Figure 3: Maintenance of membrane potential (Δψ) by saNOS.
Figure 4: Promotion of daptomycin resistance by saNOS.
Figure 5: Role of saNOS in mouse nasal colonization.
Figure 6: saNOS maintains Δψ under microaerobic conditions by regulating O2 and NO3 respiration.

Change history

  • 14 July 2017

    In the PDF version of this article previously published, the year of publication provided in the footer of each page and in the 'How to cite' section was erroneously given as 2017, it should have been 2016. This error has now been corrected. The HTML version of the article was not affected.

References

  1. 1

    Moncada, S. & Higgs, E. A. The discovery of nitric oxide and its role in vascular biology. Br. J. Pharmacol. 147(Suppl. 1), S193–S201 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Derbyshire, E. R. & Marletta, M. A. Structure and regulation of soluble guanylate cyclase. Annu. Rev. Biochem. 81, 533–559 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Nathan, C. & Xie, Q.-W. Nitric oxide synthases: roles, tolls, and controls. Cell 78, 915–918 (1994).

    CAS  Article  Google Scholar 

  4. 4

    Gusarov, I. et al. Bacterial nitric-oxide synthases operate without a dedicated redox partner. J. Biol. Chem. 283, 13140–13147 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Crane, B. R., Sudhamsu, J. & Patel, B. A. Bacterial nitric oxide synthases. Annu. Rev. Biochem. 79, 445–470 (2010).

    CAS  Article  Google Scholar 

  6. 6

    Kers, J. A. et al. Nitration of a peptide phytotoxin by bacterial nitric oxide synthase. Nature 429, 79–82 (2004).

    CAS  Article  Google Scholar 

  7. 7

    Gusarov, I. & Nudler, E. NO-mediated cytoprotection: instant adaptation to oxidative stress in bacteria. Proc. Natl Acad. Sci. USA 102, 13855–13860 (2005).

    CAS  Article  Google Scholar 

  8. 8

    Gusarov, I., Shatalin, K., Starodubtseva, M. & Nudler, E. Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science 325, 1380–1384 (2009).

    CAS  Article  Google Scholar 

  9. 9

    Tong, S. Y., Davis, J. S., Eichenberger, E., Holland, T. L. & Fowler, V. G. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28, 603–661 (2015).

    CAS  Article  Google Scholar 

  10. 10

    Klevens, R. M. et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298, 1763–1771 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Sapp, A. M. et al. Contribution of the nos-pdt operon to virulence phenotypes in methicillin-sensitive Staphylococcus aureus. PLoS ONE 9, e108868 (2014).

    Article  Google Scholar 

  12. 12

    van Sorge, N. M. et al. Methicillin-resistant Staphylococcus aureus bacterial nitric-oxide synthase affects antibiotic sensitivity and skin abscess development. J. Biol. Chem. 288, 6417–6426 (2013).

    CAS  Article  Google Scholar 

  13. 13

    Kinkel, T. L., Roux, C. M., Dunman, P. M. & Fang, F. C. The Staphylococcus aureus SrrAB two-component system promotes resistance to nitrosative stress and hypoxia. mBio 4, e00696-13 (2013).

    Article  Google Scholar 

  14. 14

    Richardson, A. R., Dunman, P. M. & Fang, F. C. The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity. Mol. Microbiol. 61, 927–939 (2006).

    CAS  Article  Google Scholar 

  15. 15

    Pilet, E., Nitschke, W., Liebl, U. & Vos, M. H. Accommodation of NO in the active site of mammalian and bacterial cytochrome c oxidase aa3 . Biochim. Biophys. Acta 1767, 387–392 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Giuffré, A., Borisov, V. B., Mastronicola, D., Sarti, P. & Forte, E. Cytochrome bd oxidase and nitric oxide: from reaction mechanisms to bacterial physiology. FEBS Lett. 586, 622–629 (2012).

    Article  Google Scholar 

  17. 17

    Sato, M., Fukuyama, N., Sakai, M. & Nakazawa, H. Increased nitric oxide in nasal lavage fluid and nitrotyrosine formation in nasal mucosa—indices for severe perennial nasal allergy. Clin. Exp. Allergy 28, 597–605 (1998).

    Article  Google Scholar 

  18. 18

    Neubauer, H. & Götz, F. Physiology and interaction of nitrate and nitrite reduction in Staphylococcus carnosus. J. Bacteriol. 178, 2005–2009 (1996).

    CAS  Article  Google Scholar 

  19. 19

    Gries, C. M., Bose, J. M., Nuxoll, A. S., Fey, P. D. & Bayles, K. W. The Ktr potassium transport system in Staphylococcus aureus and its role in cell physiology, antimicrobial resistance and pathogenesis. Mol. Microbiol. 89, 760–773 (2013).

    CAS  Article  Google Scholar 

  20. 20

    Shapiro, H. M. Flow cytometry of bacterial membrane potential and permeability. Methods Mol. Med. 142, 175–186 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Ledala, N., Zhang, B., Seravalli, J., Powers, R. & Somerville, G. A. Influence of iron and aeration on Staphylococcus aureus growth, metabolism, and transcription. J. Bacteriol. 196, 2178–2189 (2014).

    Article  Google Scholar 

  22. 22

    Richardson, A. R., Libby, S. J. & Fang, F. C. A nitric oxide-inducible lactate dehydrogenase enables Staphylococcus aureus to resist innate immunity. Science 319, 1672–1676 (2008).

    CAS  Article  Google Scholar 

  23. 23

    Alborn, W. E. Jr, Allen, N. E. & Preston, D. A. Daptomycin disrupts membrane potential in growing Staphylococcus aureus. Antimicrob. Agents Chemother. 35, 2282–2287 (1991).

    CAS  Article  Google Scholar 

  24. 24

    Silverman, J. A., Perlmutter, N. G. & Shapiro, H. M. Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob. Agents Chemother. 47, 2538–2544 (2003).

    CAS  Article  Google Scholar 

  25. 25

    Fang, F. C. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Microbiol. 2, 820–832 (2004).

    CAS  Article  Google Scholar 

  26. 26

    Hammer, N. D. et al. Two heme-dependent terminal oxidases power Staphylococcus aureus organ-specific colonisation of the vertebrate host. MBio 4, e00241-13 (2013).

    Article  Google Scholar 

  27. 27

    Gotz, F. & Mayer, S. Both terminal oxidases contribute to fitness and virulence during organ-specific staphylococcus aureus colonization. mBio 4, e00976-13 (2013).

    Article  Google Scholar 

  28. 28

    Rengasamy, A. & Johns, R. A. Determination of Km for oxygen of nitric oxide synthase isoforms. J. Pharmocol. Exp. Ther. 276, 30–33 (1996).

    CAS  Google Scholar 

  29. 29

    D'Mello, R., Hill, S. & Poole, R. K. The cytochrome bd quinol oxidase in Escherichia coli has an extremely high oxygen affinity and two oxygen-binding haems: implications for regulation of activity in vivo by oxygen inhibition. Microbiology 142, 755–763 (1996).

    CAS  Article  Google Scholar 

  30. 30

    Gardner, A. M., Martin, L. A., Gardner, P. R., Dou, Y. & Olson, J. S. Steady-state and transient kinetics of Escherichia coli nitric-oxide dioxygenase (flavohemoglobin). The B10 tyrosine hydroxyl is essential for dioxygen binding and catalysis. J. Biol. Chem. 275, 12581–12589 (2000).

    CAS  Article  Google Scholar 

  31. 31

    Gladwin, M. T. & Shiva, S. The ligand binding battle at cytochrome c oxidase: how NO regulates oxygen gradients in tissue. Circ. Res. 104, 1136–1138 (2009).

    CAS  Article  Google Scholar 

  32. 32

    Erusalimsky, J. D. & Moncada, S. Nitric oxide and mitochondrial signaling: from physiology to pathophysiology. Arterioscl. Thromb. Vasc. Biol. 27, 2524–2531 (2007).

    CAS  Article  Google Scholar 

  33. 33

    Holden, J. K. et al. Structural and biological studies on bacterial nitric oxide synthase inhibitors. Proc. Natl. Acad. Sci. USA 110, 18127–18131 (2013).

    CAS  Article  Google Scholar 

  34. 34

    Holden, J. K. et al. Nitric oxide synthase as a target for methicillin-resistant Staphylococcus aureus. Chem. Biol. 22, 785–792 (2015).

    CAS  Article  Google Scholar 

  35. 35

    Pellicena, P., Karow, D. S., Boon, E. M., Marletta, M. A. & Kuriyan, J. Crystal structure of an oxygen-binding heme domain related to soluble guanylate cyclases. Proc. Natl Acad. Sci. USA 101, 12854–12859 (2004).

    CAS  Article  Google Scholar 

  36. 36

    Rao, M., Smith, B. C. & Marletta, M. A. Nitric oxide mediates biofilm formation and symbiosis in Silicibacter sp. strain TrichCH4B. MBio 6, e00206-15 (2015).

    Article  Google Scholar 

  37. 37

    Sudhamsu, J. & Crane, B. R. Bacterial nitric oxide synthases: what are they good for? Trends Microbiol. 17, 212–218 (2009).

    CAS  Article  Google Scholar 

  38. 38

    Morris, R. L. & Schmidt, T. M. Shallow breathing: bacterial life at low O2 . Nat. Rev. Microbiol. 11, 205–212 (2013).

    CAS  Article  Google Scholar 

  39. 39

    Monk, I. R., Shah, I. M., Xu, M., Tan, M. W. & Foster, T. J. Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. mBio 3, e00277–11 (2012).

    CAS  Article  Google Scholar 

  40. 40

    Wang, W. et al. The Moraxella catarrhalis nitric oxide reductase is essential for nitric oxide detoxification. J. Bacteriol. 193, 2804–2813 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank D. Prunkard in the UW Pathology Flow Cytometry facility for help with the flow cytometer set-up and data collection, and E. Nudler for providing wild-type and bsNOS mutant B. subtilis strains. This work was supported by NIH grants AI44486, AI55396 and AI123124 (to F.C.F.) and by NIH training grant support AI055396 (to S.R.M.).

Author information

Affiliations

Authors

Contributions

Conceptualization was provided by T.L.K. and F.C.F., and the methodology was designed by T.L.K., S.R.-M., J.M.P., S.J.L. and F.C.F. Investigations were carried out by T.L.K., S.R.-M., D.V.T., E.N.S., S.J.L. and F.C.F., and data analysis by T.L.K., S.R.-M., S.J.L. and F.C.F. The original draft of the manuscript was written by T.L.K. and F.C.F., and was reviewed and edited by T.L.K., S.R.-M., J.M.P., S.J.L. and F.C.F. Funding was acquired by F.C.F.

Corresponding author

Correspondence to Ferric C. Fang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–4, Supplementary Methods, Supplementary Table 1, Supplementary References. (PDF 2804 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kinkel, T., Ramos-Montañez, S., Pando, J. et al. An essential role for bacterial nitric oxide synthase in Staphylococcus aureus electron transfer and colonization. Nat Microbiol 2, 16224 (2017). https://doi.org/10.1038/nmicrobiol.2016.224

Download citation

Further reading

Search

Quick links