Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

CryoEM structure of the Methanospirillum hungatei archaellum reveals structural features distinct from the bacterial flagellum and type IV pilus

A Corrigendum to this article was published on 22 December 2016

This article has been updated

Abstract

Archaea use flagella known as archaella—distinct both in protein composition and structure from bacterial flagella—to drive cell motility, but the structural basis of this function is unknown. Here, we report an atomic model of the archaella, based on the cryo electron microscopy (cryoEM) structure of the Methanospirillum hungatei archaellum at 3.4 Å resolution. Each archaellum contains 61,500 archaellin subunits organized into a curved helix with a diameter of 10 nm and average length of 10,000 nm. The tadpole-shaped archaellin monomer has two domains, a β-barrel domain and a long, mildly kinked α-helix tail. Our structure reveals multiple post-translational modifications to the archaella, including six O-linked glycans and an unusual N-linked modification. The extensive interactions among neighbouring archaellins explain how the long but thin archaellum maintains the structural integrity required for motility-driving rotation. These extensive inter-subunit interactions and the absence of a central pore in the archaellum distinguish it from both the bacterial flagellum and type IV pili.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: CryoEM data and refinement.
Figure 2: Post-translational modification of the M. hungatei flagellin.
Figure 3: Subunit–subunit interactions.
Figure 4: Adjacent subunit interactions.
Figure 5: Comparison between the M. hungatei archaellin and a bacterial type IV pilin and flagellin.
Figure 6: Comparison among prokaryotic motility filaments.

Change history

  • 14 July 2017

    In the PDF version of this article previously published, the year of publication provided in the footer of each page and in the 'How to cite' section was erroneously given as 2017, it should have been 2016. This error has now been corrected. The HTML version of the article was not affected.

References

  1. 1

    Albers, S.-V. & Jarrell, K. F. The archaellum: how archaea swim. Front. Microbiol. 6, 23 (2015).

    Article  Google Scholar 

  2. 2

    Näther, D. J., Rachel, R., Wanner, G. & Wirth, R. Flagella of Pyrococcus furiosus: multifunctional organelles, made for swimming, adhesion to various surfaces, and cell–cell contacts. J. Bacteriol. 188, 6915–6923 (2006).

    Article  Google Scholar 

  3. 3

    Szabó, Z. et al. Flagellar motility and structure in the hyperthermoacidophilic archaeon Sulfolobus solfataricus. J. Bacteriol. 189, 4305–4309 (2007).

    Article  Google Scholar 

  4. 4

    Jarrell, K. F. & Albers, S.-V. The archaellum: an old motility structure with a new name. Trends Microbiol. 20, 307–312 (2012).

    CAS  Article  Google Scholar 

  5. 5

    Bellack, A., Huber, H., Rachel, R., Wanner, G. & Wirth, R. Methanocaldococcus villosus sp. nov., a heavily flagellated archaeon that adheres to surfaces and forms cell–cell contacts. Int. J. Syst. Evol. Micr. 61, 1239–1245 (2011).

    Article  Google Scholar 

  6. 6

    Jarrell, K. F., Stark, M., Nair, D. B. & Chong, J. P. J. Flagella and pili are both necessary for efficient attachment of Methanococcus maripaludis to surfaces. FEMS Microbiol. Lett. 319, 44–50 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Schopf, S., Wanner, G., Rachel, R. & Wirth, R. An archaeal bi-species biofilm formed by Pyrococcus furiosus and Methanopyrus kandleri. Arch. Microbiol. 190, 371–377 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Alam, M. & Oesterhelt, D. Morphology, function and isolation of halobacterial flagella. J. Mol. Biol. 176, 459–475 (1984).

    CAS  Article  Google Scholar 

  9. 9

    Faguy, D. M., Jarrell, K. F., Kuzio, J. & Kalmokoff, M. L. Molecular analysis of archaeal flagellins: similarity to the type IV pilin-transport superfamily widespread in bacteria. Can. J. Microbiol. 40, 67–71 (1994).

    CAS  Article  Google Scholar 

  10. 10

    Correia, J. D. & Jarrell, K. F. Posttranslational processing of Methanococcus voltae preflagellin by preflagellin peptidases of M. voltae and other methanogens. J. Bacteriol. 182, 855–858 (2000).

    CAS  Article  Google Scholar 

  11. 11

    Patenge, N., Berendes, A., Engelhardt, H., Schuster, S. C. & Oesterhelt, D. The fla gene cluster is involved in the biogenesis of flagella in Halobacterium salinarum. Mol. Microbiol. 41, 653–663 (2001).

    CAS  Article  Google Scholar 

  12. 12

    Thomas, N. A., Pawson, C. T. & Jarrell, K. F. Insertional inactivation of the flaH gene in the archaeon Methanococcus voltae results in non-flagellated cells. Mol. Genet. Genomics 265, 596–603 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Chaban, B. et al. Systematic deletion analyses of the fla genes in the flagella operon identify several genes essential for proper assembly and function of flagella in the archaeon, Methanococcus maripaludis. Mol. Microbiol. 66, 596–609 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Lassak, K. et al. Molecular analysis of the crenarchaeal flagellum. Mol. Microbiol. 83, 110–124 (2012).

    CAS  Article  Google Scholar 

  15. 15

    Streif, S., Staudinger, W. F., Marwan, W. & Oesterhelt, D. Flagellar rotation in the archaeon Halobacterium salinarum depends on ATP. J. Mol. Biol. 384, 1–8 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Banerjee, A. et al. Flaf is a β-sandwich protein that anchors the archaellum in the archaeal cell envelope by binding the S-layer protein. Structure 23, 863–872 (2015).

    CAS  Article  Google Scholar 

  17. 17

    Chaudhury, P. et al. The nucleotide-dependent interaction of FlaH and FlaI is essential for assembly and function of the archaellum motor. Mol. Microbiol. 99, 674–685 (2016).

    CAS  Article  Google Scholar 

  18. 18

    Trachtenberg, S., Galkin, V. E. & Egelman, E. H. Refining the structure of the Halobacterium salinarum flagellar filament using the iterative helical real space reconstruction method: insights into polymorphism. J. Mol. Biol. 346, 665–676 (2005).

    CAS  Article  Google Scholar 

  19. 19

    Trachtenberg, S. & Cohen-Krausz, S. The archaeabacterial flagellar filament: a bacterial propeller with a pilus-like structure. J. Mol. Microb Biotech. 11, 208–220 (2006).

    CAS  Article  Google Scholar 

  20. 20

    Beveridge, T. J., Sprott, G. D. & Whippey, P. Ultrastructure, inferred porosity, and Gram-staining character of Methanospirillum hungatei filament termini describe a unique cell permeability for this archaeobacterium. J. Bacteriol. 173, 130–140 (1991).

    CAS  Article  Google Scholar 

  21. 21

    Xu, W. et al. Modeling and measuring the elastic properties of an archaeal surface, the sheath of Methanospirillum hungatei, and the implication of methane production. J. Bacteriol. 178, 3106–3112 (1996).

    CAS  Article  Google Scholar 

  22. 22

    Toso, D. B., Henstra, A. M., Gunsalus, R. P. & Zhou, Z. H. Structural, mass and elemental analyses of storage granules in methanogenic archaeal cells. Environ. Microbiol. 13, 2587–2599 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Gunsalus, R. P. et al. Complete genome sequence of Methanospirillum hungatei type strain JF1. Standards Genomic Sci. 11, 2 (2016).

    Article  Google Scholar 

  24. 24

    Bardy, S. L. & Jarrell, K. F. Flak of the archaeon Methanococcus maripaludis possesses preflagellin peptidase activity. FEMS Microbiol. Lett. 208, 53–59 (2002).

    CAS  Article  Google Scholar 

  25. 25

    Bardy, S. L. & Jarrell, K. F. Cleavage of preflagellins by an aspartic acid signal peptidase is essential for flagellation in the archaeon Methanococcus voltae. Mol. Microbiol. 50, 1339–1347 (2003).

    CAS  Article  Google Scholar 

  26. 26

    Szabó, Z. et al. Identification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases. J. Bacteriol. 189, 772–778 (2007).

    Article  Google Scholar 

  27. 27

    Albers, S.-V., Szabó, Z. & Driessen, A. J. M. Archaeal homolog of bacterial type IV prepilin signal peptidases with broad substrate specificity. J. Bacteriol. 185, 3918–3925 (2003).

    CAS  Article  Google Scholar 

  28. 28

    Ng, S. Y. M., Chaban, B. & Jarrell, K. F. Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications. J. Mol. Microbiol. Biotech. 11, 167–191 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Kelly, J., Logan, S. M., Jarrell, K. F., VanDyke, D. J. & Vinogradov, E. A novel N-linked flagellar glycan from Methanococcus maripaludis. Carbohyd. Res. 344, 648–653 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Voisin, S. et al. Identification and characterization of the unique N-linked glycan common to the flagellins and S-layer glycoprotein of Methanococcus voltae. J. Biol. Chem. 280, 16586–16593 (2005).

    CAS  Article  Google Scholar 

  31. 31

    Sun, S. & Zhang, H. Identification and validation of atypical N-glycosylation sites. Anal. Chem. 87, 11948–11951 (2015).

    CAS  Article  Google Scholar 

  32. 32

    Banerjee, A., Neiner, T., Tripp, P. & Albers, S.-V. Insights into subunit interactions in the Sulfolobus acidocaldarius archaellum cytoplasmic complex. FEBS J. 280, 6141–6149 (2013).

    CAS  Article  Google Scholar 

  33. 33

    Jarrell, K. F., Bayley, D. P. & Kostyukova, A. S. The archaeal flagellum: a unique motility structure. J. Bacteriol. 178, 5057–5064 (1996).

    CAS  Article  Google Scholar 

  34. 34

    Tripepi, M. et al. N-glycosylation of Haloferax volcanii flagellins requires known Agl proteins and is essential for biosynthesis of stable flagella. J. Bacteriol. 194, 4876–4887 (2012).

    CAS  Article  Google Scholar 

  35. 35

    Ding, Y. et al. Effects of N-glycosylation site removal in archaellins on the assembly and function of archaella in Methanococcus maripaludis. PLoS ONE 10, e0116402 (2015).

    Article  Google Scholar 

  36. 36

    Meyer, B. H. et al. Agl16, a thermophilic glycosyltransferase mediating the last step of N-glycan biosynthesis in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. J. Bacteriol. 195, 2177–2186 (2013).

    CAS  Article  Google Scholar 

  37. 37

    Meyer, B. H., Birich, A. & Albers, S.-V. N-glycosylation of the archaellum filament is not important for archaella assembly and motility, although N-glycosylation is essential for motility in Sulfolobus acidocaldarius. Biochimie 118, 294–301 (2015).

    CAS  Article  Google Scholar 

  38. 38

    Turner, L., Ryu, W. S. & Berg, H. C. Real-time imaging of fluorescent flagellar filaments. J. Bacteriol. 182, 2793–2801 (2000).

    CAS  Article  Google Scholar 

  39. 39

    Yonekura, K., Maki-Yonekura, S. & Namba, K. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424, 643–650 (2003).

    CAS  Article  Google Scholar 

  40. 40

    Craig, L. et al. Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. Mol. Cell 23, 651–662 (2006).

    CAS  Article  Google Scholar 

  41. 41

    Mortezaei, N. et al. Structure and function of enterotoxigenic Escherichia coli fimbriae from differing assembly pathways. Mol. Microbiol. 95, 116–126 (2015).

    CAS  Article  Google Scholar 

  42. 42

    Silverman, P. M. Towards a structural biology of bacterial conjugation. Mol. Microbiol. 23, 423–429 (1997).

    CAS  Article  Google Scholar 

  43. 43

    McLaughlin, L. S., Haft, R. J. F. & Forest, K. T. Structural insights into the type II secretion nanomachine. Curr. Opin. Struc. Biol. 22, 208–216 (2012).

    CAS  Article  Google Scholar 

  44. 44

    Yu, X. et al. Filaments from Ignicoccus hospitalis show diversity of packing in proteins containing N-terminal type IV pilin helices. J. Mol. Biol. 422, 274–281 (2012).

    CAS  Article  Google Scholar 

  45. 45

    Henche, A.-L. et al. Structure and function of the adhesive type IV pilus of Sulfolobus acidocaldarius. Environ. Microbiol. 14, 3188–3202 (2012).

    CAS  Article  Google Scholar 

  46. 46

    Braun, T. et al. Archaeal flagellin combines a bacterial type IV pilin domain with an Ig-like domain. Proc. Natl Acad. Sci. USA 113, 10352–10357 (2016).

    CAS  Article  Google Scholar 

  47. 47

    Faguy, D. M., Koval, S. F. & Jarrell, K. F. Effect of changes in mineral composition and growth temperature on filament length and flagellation in the Archaeon Methanospirillum hungatei. Arch. Microbiol. 159, 512–520 (1993).

    CAS  Article  Google Scholar 

  48. 48

    Patel, G. B., Roth, L. A., Berg, L. v. d. & Clark, D. S. Characterization of a strain of Methanospirillum hungatii. Can. J. Microbiol. 22, 1404–1410 (1976).

    CAS  Article  Google Scholar 

  49. 49

    Edman, P. & Begg, G. A protein sequenator. Eur. J. Biochem. 1, 80–91 (1967).

    CAS  Article  Google Scholar 

  50. 50

    Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article  Google Scholar 

  51. 51

    Altschul, S. F. et al. Protein database searches using compositionally adjusted substitution matrices. FEBS J. 272, 5101–5109 (2005).

    CAS  Article  Google Scholar 

  52. 52

    Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999).

    CAS  Article  Google Scholar 

  53. 53

    Suloway, C. et al. Fully automated, sequential tilt-series acquisition with Leginon. J. Struct. Biol. 167, 11–18 (2009).

    CAS  Article  Google Scholar 

  54. 54

    Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013).

    CAS  Article  Google Scholar 

  55. 55

    DeRosier, D. J. & Moore, P. B. Reconstruction of three-dimensional images from electron micrographs of structures with helical symmetry. J. Mol. Biol. 52, 355–369 (1970).

    CAS  Article  Google Scholar 

  56. 56

    Ludtke, S. J., Baldwin, P. R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    CAS  Article  Google Scholar 

  57. 57

    Egelman, E. H. The iterative helical real space reconstruction method: surmounting the problems posed by real polymers. J. Struct. Biol. 157, 83–94 (2007).

    CAS  Article  Google Scholar 

  58. 58

    Ge, P. et al. Cryo-EM model of the bullet-shaped vesicular stomatitis virus. Science 327, 689–693 (2010).

    CAS  Article  Google Scholar 

  59. 59

    Scheres, S. H. W. A Bayesian view on cryo-EM structure determination. J. Mol. Biol. 415, 406–418 (2012).

    CAS  Article  Google Scholar 

  60. 60

    Clemens, D. L., Ge, P., Lee, B.-Y., Horwitz, M. A. & Zhou, Z. H. Atomic structure of T6SS reveals interlaced array essential to function. Cell 160, 940–951 (2015).

    CAS  Article  Google Scholar 

  61. 61

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS  Article  Google Scholar 

  62. 62

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    CAS  Article  Google Scholar 

  63. 63

    Pettersen, E. F. et al. UCSF chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This project received support from National Institutes of Health grants GM071940 and AI094386, NIH/NCRR/NCATS UCLA CTSI grant UL1TR000124, from the UCLA-DOE Institute (DE-FC03-02ER6342) to R.P.G. and R.O.L., and NSF grants DMR-1548924 to Z.H.Z. and 1515843 to R.P.G. N.P. was supported in part by the NIH Biotechnology Training Grant Program (T32GM067555). P.G. was supported in part by an American Heart Association Western States Affiliates Postdoc Fellowship (13POST17340020). The authors acknowledge the use of instruments at the Electron Imaging Center for Nanomachines supported by UCLA and by instrumentation grants from NIH (1S10OD018111) and NSF (DBI-1338135). NIH support for mass spectrometry was provided by grant S10RR025600. The authors acknowledge computer time at the Extreme Science and Engineering Discovery Environment (XSEDE, grant MCB140140 to Z.H.Z.).

Author information

Affiliations

Authors

Contributions

Z.H.Z. and R.P.G. designed the project. N.P., P.G., R.R.O.L. and H.H.N. performed the experiments and analysed the data. Z.H.Z., R.P.G. and N.P. wrote the paper. All authors contributed to editing the manuscript.

Corresponding author

Correspondence to Z. Hong Zhou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Video Legends 1–8, Supplementary Figures 1-9, Supplementary Tables 1–3. (PDF 2758 kb)

Supplementary Video 1

Overview of the M. hungatei cryoEM density map. (AVI 21147 kb)

Supplementary Video 2

Overview of the M. hungatei FlaB monomer model. (AVI 32286 kb)

Supplementary Video 3

Overview of the extra densities in the cryoEM map. (AVI 26432 kb)

Supplementary Video 4

Overview of inter-subunit interactions. (AVI 37145 kb)

Supplementary Video 5

Focus on inter-subunit hydrophobic interactions. (AVI 29729 kb)

Supplementary Video 6

Focus on inter-subunit ionic interactions. (AVI 11128 kb)

Supplementary Video 7

Comparison between a bacterial pilin, archaellin and bacterial flagellin. (AVI 17338 kb)

Supplementary Video 8

Comparison between protofilaments of bacterial pili, archaella and bacterial flagella. (AVI 11914 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Poweleit, N., Ge, P., Nguyen, H. et al. CryoEM structure of the Methanospirillum hungatei archaellum reveals structural features distinct from the bacterial flagellum and type IV pilus. Nat Microbiol 2, 16222 (2017). https://doi.org/10.1038/nmicrobiol.2016.222

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing