Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dual-specificity phosphatase 6 deficiency regulates gut microbiome and transcriptome response against diet-induced obesity in mice

This article has been updated

Abstract

The gut microbiota plays profound roles in host metabolism and the inflammatory response associated with the development of obesity. Dusp6-deficient mice have been shown to be resistant to diet-induced obesity, but the mechanism behind this remains unclear. 16S ribosomal RNA gene analysis demonstrated that dusp6-deficient mice harbour unique gut microbiota with resistance to diet-induced-obesity-mediated alteration of the gut microbiome. Using a germ-free mouse model, we found that faecal/gut microbiota derived from dusp6-deficient mice significantly increased energy expenditure and reduced weight gain in recipient wild-type mice fed on a high-fat diet. On analysis of the intestinal transcriptome of dusp6-deficient mice, we found that dusp6 deficiency mainly induced biological processes involved in metabolism and the extracellular matrix, particularly the peroxisome proliferator-activated receptor gamma (Pparγ) pathway and tight-junction genes. Furthermore, dusp6-deficient mice have a high-fat-diet-specific transcriptomic response to reverse the expression of genes associated with intestinal barrier functions and mucosal immunity involved in microbiome homeostasis. This study demonstrates that dusp6 deficiency is a strong genetic factor shaping gut microbiota, and that it confers obesity protection by ameliorating the gut microbiota response to diet-mediated stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dusp6-deficient-mice-derived faecal microbiota increases DIO resistance in FMT recipient mice.
Figure 2: Dusp6-deficient mice are resistant to HFD-mediated alteration of the gut microbiome.
Figure 3: Colonization of gut microbiota derived from dusp6-deficient mice contributes to obesity resistance in FMT recipient mice.
Figure 4: Intestine transcriptome analysis of dusp6-deficient and WT mice.
Figure 5: Dusp6 deficiency modulates intestinal mucosal immunity to adapt HFD challenging.
Figure 6: Dusp6 deficiency confers HFD-specific modulation to maintain physiological barrier function.

Similar content being viewed by others

Change history

  • 14 July 2017

    In the PDF version of this article previously published, the year of publication provided in the footer of each page and in the 'How to cite' section was erroneously given as 2017, it should have been 2016. This error has now been corrected. The HTML version of the article was not affected.

References

  1. Lang, R., Hammer, M. & Mages, J. DUSP meet immunology dual specificity MAPK phosphatases in control of the inflammatory response. J. Immunol. 177, 7497–7504 (2006).

    Article  CAS  Google Scholar 

  2. Jeffrey, K. L., Camps, M., Rommel, C. & Mackay, C. R. Targeting dual-specificity phosphatases manipulating MAP kinase signalling and immune responses. Nat. Rev. Drug. Discov. 6, 391–403 (2007).

    Article  CAS  Google Scholar 

  3. Li, C., Scott, D. A., Hatch, E., Tian, X. & Mansour, S. L. Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development 134, 167–176 (2007).

    Article  CAS  Google Scholar 

  4. Maillet, M. et al. DUSP6 (MKP3) null mice show enhanced ERK1/2 phosphorylation at baseline and increased myocyte proliferation in the heart affecting disease susceptibility. J. Biol. Chem. 283, 31246–31255 (2008).

    Article  CAS  Google Scholar 

  5. Feng, B., He, Q. & Xu, H. FOXO1-dependent up-regulation of MAP kinase phosphatase 3 (MKP-3) mediates glucocorticoid-induced hepatic lipid accumulation in mice. Mol. Cell. Endocrinol. 393, 46–55 (2014).

    Article  CAS  Google Scholar 

  6. Feng, B. et al. Mitogen-activated protein kinase phosphatase 3 (MKP-3)-deficient mice are resistant to diet-induced obesity. Diabetes 63, 2924–2934 (2014).

    Article  Google Scholar 

  7. Tilg, H. & Kaser, A. Gut microbiome, obesity, and metabolic dysfunction. J. Clin. Invest. 121, 2126–2132 (2011).

    Article  CAS  Google Scholar 

  8. Everard, A. et al. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J. 8, 2116–2130 (2014).

    Article  CAS  Google Scholar 

  9. Walters, W. A., Xu, Z. & Knight, R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 588, 4223–4233 (2014).

    Article  CAS  Google Scholar 

  10. Parks, B. W. et al. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab. 17, 141–152 (2013).

    Article  CAS  Google Scholar 

  11. Lozupone, C. A., Hamady, M., Kelley, S. T. & Knight, R. Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 73, 1576–1585 (2007).

    Article  CAS  Google Scholar 

  12. Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 5, 169–172 (2011).

    Article  Google Scholar 

  13. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    Article  CAS  Google Scholar 

  14. Neyrinck, A. M. et al. Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice. PLoS ONE 6, e20944 (2011).

    Article  CAS  Google Scholar 

  15. Conterno, L., Fava, F., Viola, R. & Tuohy, K. M. Obesity and the gut microbiota: does up-regulating colonic fermentation protect against obesity and metabolic disease? Genes Nutr. 6, 241–260 (2011).

    Article  CAS  Google Scholar 

  16. Zhang, H. et al. Human gut microbiota in obesity and after gastric bypass. Proc. Natl Acad. Sci. USA 106, 2365–2370 (2009).

    Article  CAS  Google Scholar 

  17. Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA 110, 9066–9071 (2013).

    Article  CAS  Google Scholar 

  18. Blake, J. A. Ten quick tips for using the gene ontology. PLoS Comput. Biol. 9, e1003343 (2013).

    Article  Google Scholar 

  19. Citalan-Madrid, A. F., Garcia-Ponce, A., Vargas-Robles, H., Betanzos, A. & Schnoor, M. Small GTPases of the Ras superfamily regulate intestinal epithelial homeostasis and barrier function via common and unique mechanisms. Tissue Barriers 1, e26938 (2013).

    Article  Google Scholar 

  20. Norman, R. A., Bogardus, C. & Ravussin, E. Linkage between obesity and a marker near the tumor necrosis factor-alpha locus in Pima Indians. J. Clin. Invest. 96, 158–162 (1995).

    Article  CAS  Google Scholar 

  21. Mahajan, A. et al. Obesity-dependent association of TNF-LTA locus with type 2 diabetes in North Indians. J. Mol. Med. 88, 515–522 (2010).

    Article  CAS  Google Scholar 

  22. Upadhyay, V. et al. Lymphotoxin regulates commensal responses to enable diet-induced obesity. Nat. Immunol. 13, 947–953 (2012).

    Article  CAS  Google Scholar 

  23. Tornavaca, O. et al. ZO-1 controls endothelial adherens junctions, cell–cell tension, angiogenesis, and barrier formation. J. Cell Biol. 208, 821–838 (2015).

    Article  CAS  Google Scholar 

  24. Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

    Article  CAS  Google Scholar 

  25. Salzman, N. H. et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat. Immunol. 11, 76–83 (2010).

    Article  CAS  Google Scholar 

  26. Peterson, L. W. & Artis, D. Intestinal epithelial cells regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14, 141–153 (2014).

    Article  CAS  Google Scholar 

  27. Gonzalez-Navajas, J. M. et al. TLR4 signaling in effector CD4+ T cells regulates TCR activation and experimental colitis in mice. J. Clin. Invest. 120, 570–581 (2010).

    Article  CAS  Google Scholar 

  28. Bertin, S. et al. Dual-specificity phosphatase 6 regulates CD4+ T-cell functions and restrains spontaneous colitis in IL-10-deficient mice. Mucosal Immunol. 8, 505–515 (2015).

    Article  CAS  Google Scholar 

  29. Saraiva, M. & O'Garra, A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 10, 170–181 (2010).

    Article  CAS  Google Scholar 

  30. Maharshak, N. et al. Altered enteric microbiota ecology in interleukin 10-deficient mice during development and progression of intestinal inflammation. Gut Microbes 4, 316–324 (2013).

    Article  Google Scholar 

  31. Yang, I. et al. Intestinal microbiota composition of interleukin-10 deficient C57BL/6J mice and susceptibility to Helicobacter hepaticus-induced colitis. PLoS ONE 8, e70783 (2013).

    Article  CAS  Google Scholar 

  32. Berger, J. & Moller, D. E. The mechanisms of action of PPARs. Annu. Rev. Med. 53, 409–435 (2002).

    Article  CAS  Google Scholar 

  33. Stienstra, R., Duval, C., Muller, M. & Kersten, S. PPARs, obesity, and inflammation. PPAR Res. 2007, 95974 (2007).

    Article  Google Scholar 

  34. Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    Article  CAS  Google Scholar 

  35. Wu, Z. et al. MAPK phosphatase-3 promotes hepatic gluconeogenesis through dephosphorylation of forkhead box O1 in mice. J. Clin. Invest. 120, 3901–3911 (2010).

    Article  CAS  Google Scholar 

  36. Kim, W. K. et al. MAP kinase phosphatase 3 inhibits brown adipocyte differentiation via regulation of Erk phosphorylation. Mol. Cell Endocrinol. 416, 70–76 (2015).

    Article  CAS  Google Scholar 

  37. Braniste, V. et al. The gut microbiota influences blood–brain barrier permeability in mice. Sci. Transl. Med. 6, 263ra158 (2014).

    Article  Google Scholar 

  38. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    Article  CAS  Google Scholar 

  39. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    Article  CAS  Google Scholar 

  40. McDonald, D. et al. An improved greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).

    Article  CAS  Google Scholar 

  41. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    Article  CAS  Google Scholar 

  42. Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).

    Article  CAS  Google Scholar 

  43. Dobin, A. et al. STAR ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  Google Scholar 

  44. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  Google Scholar 

  45. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  46. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  Google Scholar 

  47. Chen, E. Y. et al. Expression2Kinases: mRNA profiling linked to multiple upstream regulatory layers. Bioinformatics 28, 105–111 (2012).

    Article  CAS  Google Scholar 

  48. Shannon, P. et al. Cytoscape a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  Google Scholar 

  49. Liao, Y. C. et al. Overexpressed hPTTG1 promotes breast cancer cell invasion and metastasis by regulating GEF-H1/RhoA signalling. Oncogene 31, 3086–3097 (2012).

    Article  CAS  Google Scholar 

  50. Natoli, M. et al. Cell growing density affects the structural and functional properties of Caco-2 differentiated monolayer. J. Cell Physiol. 226, 1531–1543 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank N.H. Salzman (Department of Pediatrics, Medical College of Wisconsin) for the gift of SFB plasmid CTL5-6 and C.-T. Chen (NHRI) for providing Caco-2 cells. The authors thank P.-J. Tsai (Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University) for assistance with TEER analysis. The authors acknowledge the Taiwan Mouse Clinic (MOST 104-2325-B-001-011), which is funded by the National Research Program for Biopharmaceuticals (NRPB) at the Ministry of Science and Technology (MOST) of Taiwan, for technical support regarding mouse energy expenditure and NMR experiments. This work was supported by the following grants: 104-IMPP05 from NHRI and 103-2320-B-400-017, 104-2320-B-400-019-MY3 and 104-2320-B-400-020-MY2 from MOST (J.W.R., C.T.H. and C.Y.K.); 105-IMPP01 and 105-IMSP01 from NHRI and 105-2314-B-400-027 from MOST (T.H.T.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.-W.R., C.-C.K., H.-L.C. and C.-Y.K. designed the study. J.-W.R., C.-T.H. and Y.-T.T. performed and evaluated the experiments. J.-W.R., S.S., Y.-C.L. and C.-Y.K. performed bioinformatic analyses. T.-H.T. provided DUSP6 research resources including knock-out mice. J.-W.R., S.S. and C.-Y.K. wrote the manuscript. C.-Y.K. supervised the entire work.

Corresponding author

Correspondence to Cheng-Yuan Kao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–5, Supplementary Tables 1,2,4, Supplementary References. (PDF 5164 kb)

Supplementary Table 3

KEGG pathways: PPAR pathway and tight-junction pathway. (XLSX 2854 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, JW., Statt, S., Huang, CT. et al. Dual-specificity phosphatase 6 deficiency regulates gut microbiome and transcriptome response against diet-induced obesity in mice. Nat Microbiol 2, 16220 (2017). https://doi.org/10.1038/nmicrobiol.2016.220

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.220

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing