Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting the ATP-dependent formation of herpesvirus ribonucleoprotein particle assembly as an antiviral approach

This article has been updated

Abstract

Human herpesviruses are responsible for a range of debilitating acute and recurrent diseases, including a number of malignancies. Current treatments are limited to targeting the herpesvirus DNA polymerases, but with emerging viral resistance and little efficacy against the oncogenic herpesviruses, there is an urgent need for new antiviral strategies. Here, we describe a mechanism to inhibit the replication of the oncogenic herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV), by targeting the ATP-dependent formation of viral ribonucleoprotein particles (vRNPs). We demonstrate that small-molecule inhibitors which selectively inhibit the ATPase activity of the cellular human transcription/export complex (hTREX) protein UAP56 result in effective inhibition of vRNP formation, viral lytic replication and infectious virion production. Strikingly, as all human herpesviruses use conserved mRNA processing pathways involving hTREX components, we demonstrate the feasibility of this approach for pan-herpesvirus inhibition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ATP-cycle-dependent remodelling of hTREX affects ORF57-mediated vRNP formation.
Figure 2: Identification of UAP56-targeted ATPase inhibitor.
Figure 3: CCT018159 disrupts formation and function of the vRNP, but not of the endogenous hTREX complex.
Figure 4: Disruption of virus lytic replication and infectious virion production by CCT018159.
Figure 5: Inhibition of α- and β-herpesvirus replication by CCT018159.

Similar content being viewed by others

Change history

  • 14 July 2017

    In the PDF version of this article previously published, the year of publication provided in the footer of each page and in the 'How to cite' section was erroneously given as 2017, it should have been 2016. This error has now been corrected. The HTML version of the article was not affected.

References

  1. Gilden, D. H., Mahalingam, R., Cohrs, R. J. & Tyler, K. L. Herpesvirus infections of the nervous system. Nat. Clin. Pract. Neurol. 3, 82–94 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Owen, C. B. et al. Utilising proteomic approaches to understand oncogenic human herpesviruses (Review). Mol. Clin. Oncol. 2, 891–903 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Quadrelli, C. et al. β-HHVs and HHV-8 in lymphoproliferative disorders. Mediterr. J. Hematol. Infect. Dis. 3, e2011043 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ganem, D. KSHV infection and the pathogenesis of Kaposi's sarcoma. Annu. Rev. Pathol. 1, 273–296 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Mesri, E. A., Cesarman, E. & Boshoff, C. Kaposi's sarcoma and its associated herpesvirus. Nat. Rev. Cancer 10, 707–719 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arvanitakis, L., Geras-Raaka, E., Varma, A., Gershengorn, M. C. & Cesarman, E. Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 385, 347–350 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Vart, R. J. et al. Kaposi's sarcoma-associated herpesvirus-encoded interleukin-6 and G-protein-coupled receptor regulate angiopoietin-2 expression in lymphatic endothelial cells. Cancer Res. 67, 4042–4051 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Nicholas, J. et al. Kaposi's sarcoma-associated human herpesvirus-8 encodes homologues of macrophage inflammatory protein-1 and interleukin-6. Nat. Med. 3, 287–292 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Tomlinson, C. C. & Damania, B. The K1 protein of Kaposi's sarcoma-associated herpesvirus activates the Akt signaling pathway. J. Virol. 78, 1918–1927 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brinkmann, M. M. et al. Activation of mitogen-activated protein kinase and NF-κB pathways by a Kaposi's sarcoma-associated herpesvirus K15 membrane protein. J. Virol. 77, 9346–9358 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jackson, B. R., Noerenberg, M. & Whitehouse, A. A novel mechanism inducing genome instability in Kaposi's sarcoma-associated herpesvirus infected cells. PLoS Pathogens 10, e1004098 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Bacon, T. H., Levin, M. J., Leary, J. J., Sarisky, R. T. & Sutton, D. Herpes simplex virus resistance to acyclovir and penciclovir after two decades of antiviral therapy. Clin. Microbiol. Rev. 16, 114–128 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fife, K. et al. Cidofovir for the treatment of Kaposi's sarcoma in an HIV-negative homosexual man. Br. J. Dermatol. 141, 1136–1152 (1999).

    Article  Google Scholar 

  14. Mazzi, R. et al. Efficacy of cidofovir on human herpesvirus 8 viraemia and Kaposi's sarcoma progression in two patients with AIDS. AIDS 15, 2061–2062 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Little, R. F. et al. A pilot study of cidofovir in patients with Kaposi sarcoma. J. Infect. Dis. 187, 149–153 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Martin, D. F. et al. Oral ganciclovir for patients with cytomegalovirus retinitis treated with a ganciclovir implant. N. Engl. J. Med. 340, 1063–1070 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Glesby, M. J. et al. Use of antiherpes drugs and the risk of Kaposi's sarcoma: data from the multicenter AIDS cohort study. J. Infect. Dis. 173, 1477–1480 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Cordin, O., Banroques, J., Tanner, N. K. & Linder, P. The DEAD-box protein family of RNA helicases. Gene 367, 17–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Shadrick, W. R. et al. Discovering new medicines targeting helicases: challenges and recent progress. J. Biomol. Screen. 18, 761–781 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, C.-S. et al. Structure-based discovery of triphenylmethane derivatives as inhibitors of hepatitis C virus helicase. J. Med. Chem. 52, 2716–2723 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Artsaenko, O., Tessmann, K., Sack, M., Häussinger, D. & Heintges, T. Abrogation of hepatitis C virus NS3 helicase enzymatic activity by recombinant human antibodies. J. Gen. Virol. 84, 2323–2332 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Hwang, B. et al. Isolation of specific and high-affinity RNA aptamers against NS3 helicase domain of hepatitis C virus. RNA 10, 1277–1290 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lindqvist, L. et al. Selective pharmacological targeting of a DEAD Box RNA helicase. PLoS ONE 3, e1583 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Tsumuraya, T. et al. Effects of hippuristanol, an inhibitor of eIF4A, on adult T-cell leukemia. Biochem. Pharmacol. 81, 713–722 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Yedavalli, V. S. R. K. et al. Ring expanded nucleoside analogues inhibit RNA helicase and intracellular human immunodeficiency virus type 1 replication. J. Med. Chem. 51, 5043–5051 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boyne, J. R. & Whitehouse, A. γ-2 Herpes virus post-transcriptional gene regulation. Clin. Microbiol. Infect. 12, 110–117 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Schumann, S., Jackson, B., Baquero-Perez, B. & Whitehouse, A. Kaposi's sarcoma-associated herpesvirus ORF57 protein: exploiting all stages of viral mRNA processing. Viruses 5, 1901–1923 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boyne, J. R., Jackson, B. R., Taylor, A., Macnab, S. A. & Whitehouse, A. Kaposi's sarcoma-associated herpesvirus ORF57 protein interacts with PYM to enhance translation of viral intronless mRNAs. EMBO J. 29, 1851–1864 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jackson, B. R. et al. An interaction between KSHV ORF57 and UIF provides mRNA-adaptor redundancy in herpesvirus intronless mRNA export. PLoS Pathogens 7, e1002138 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hautbergue, G. M. et al. UIF, a new mRNA export adaptor that works together with REF/ALY, requires FACT for recruitment to mRNA. Curr. Biol. 19, 1918–1924 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dufu, K. et al. ATP is required for interactions between UAP56 and two conserved mRNA export proteins, Aly and CIP29, to assemble the TREX complex. Genes Dev. 24, 2043–2053 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chang, C. T. et al. Chtop is a component of the dynamic TREX mRNA export complex. EMBO J. 32, 473–486 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Boyne, J. R., Colgan, K. J. & Whitehouse, A. Recruitment of the complete hTREX complex is required for Kaposi's sarcoma-associated herpesvirus intronless mRNA nuclear export and virus replication. PLoS Pathogens 4, e1000194 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Shi, H., Cordin, O., Minder, C. M., Linder, P. & Xu, R.-M. Crystal structure of the human ATP-dependent splicing and export factor UAP56. Proc. Natl Acad. Sci. USA 101, 17628–17633 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dymock, B. W. et al. Novel, potent small-molecule inhibitors of the molecular chaperone Hsp90 discovered through structure-based design. J. Med. Chem. 48, 4212–4215 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Shen, J., Zhang, L. & Zhao, R. Biochemical characterization of the ATPase and helicase activity of UAP56, an essential pre-mRNA splicing and mRNA export factor. J. Biol. Chem. 282, 22544–22550 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Sharp, S. Y. et al. In vitro biological characterization of a novel, synthetic diaryl pyrazole resorcinol class of heat shock protein 90 inhibitors. Cancer Res. 67, 2206–2216 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Boyne, J. R. & Whitehouse, A. Nucleolar disruption impairs Kaposi's sarcoma-associated herpesvirus ORF57-mediated nuclear export of intronless viral mRNAs. FEBS Lett. 583, 3549–3556 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Schumann, S., Baquero-Perez, B. & Whitehouse, A. Interactions between KSHV ORF57 and the novel human TREX proteins, CHTOP and CIP29. J. Gen. Virol. 97, 1904–1910 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stubbs, S. H., Hunter, O. V., Hoover, A. & Conrad, N. K. Viral factors reveal a role for REF/Aly in nuclear RNA stability. Mol. Cell. Biol. 32, 1260–1270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nakamura, H. et al. Global changes in Kaposi's sarcoma-associated virus gene expression patterns following expression of a tetracycline-inducible Rta transactivator. J. Virol. 77, 4205–4220 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, W., Sin, S.-H., Wen, K. W., Damania, B. & Dittmer, D. P. Hsp90 inhibitors are efficacious against Kaposi Sarcoma by enhancing the degradation of the essential viral gene LANA, of the viral co-receptor EphA2 as well as other client proteins. PLoS Pathogens 8, e1003048 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nayar, U. et al. Targeting the Hsp90-associated viral oncoproteome in gammaherpesvirus-associated malignancies. Blood 122, 2837–2847 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Higashi, C. et al. The effects of heat shock protein 90 inhibitors on apoptosis and viral replication in primary effusion lymphoma cells. Biol. Pharm. Bull. 35, 725–730 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Zhao, R., Shen, J., Green, M. R., MacMorris, M. & Blumenthal, T. Crystal structure of UAP56, a DExD/H-box protein involved in pre-mRNA splicing and mRNA export. Structure 12, 1373–1381 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Nielsen, K. H. et al. Mechanism of ATP turnover inhibition in the EJC. RNA 15, 67–75 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Smith, N. F. et al. Preclinical pharmacokinetics and metabolism of a novel diaryl pyrazole resorcinol series of heat shock protein 90 inhibitors. Mol. Cancer Ther. 5, 1628–1637 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Tunnicliffe, R. B. et al. Structural basis for the recognition of cellular mRNA export factor REF by herpes viral proteins HSV-1 ICP27 and HVS ORF57. PLoS Pathogens 7, e1001244 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lischka, P., Toth, Z., Thomas, M., Mueller, R. & Stamminger, T. The UL69 transactivator protein of human cytomegalovirus interacts with DEXD/H-box RNA helicase UAP56 to promote cytoplasmic accumulation of unspliced RNA. Mol. Cell. Biol. 26, 1631–1643 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Read, E. K. C. & Digard, P. Individual influenza A virus mRNAs show differential dependence on cellular NXF1/TAP for their nuclear export. J. Gen. Virol. 91, 1290–1301 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S. & Coleman, R. G. ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model. 52, 1757–1768 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheng, H. et al. Human mRNA export machinery recruited to the 5’ end of mRNA. Cell 127, 1389–1400 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Hughes, D. J., Wood, J. J., Jackson, B. R., Baquero-Pérez, B. & Whitehouse, A. NEDDylation is essential for Kaposi's sarcoma-associated herpesvirus latency and lytic reactivation and represents a novel anti-KSHV target. PLoS Pathogens 11, e1004771 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Griffiths, D. A. et al. Merkel cell polyomavirus small T antigen targets the NEMO adaptor protein to disrupt inflammatory signaling. J. Virol. 87, 13853–13867 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Knight, L. M. et al. Merkel cell polyomavirus small T antigen mediates microtubule destabilisation to promote cell motility and migration. J. Virol. 89, 35–47 (2015).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Jung (UCLA), S. Efstathiou and J. Sinclair (Cambridge) for cell lines and recombinant viruses, and S. Wilson (Sheffield), R. Reed (Harvard), T. Stamminger (Erlangen) and R.M. Sandri-Goldin (Irvine) for the gift of antibodies and plasmid constructs. The authors also thank I. Mainfield, Centre for Biomolecular Interactions, Faculty of Biological Sciences, for advice. This work was supported in part by the Wellcome Trust (093788/Z/10/Z); Worldwide Cancer Research (12-1045), BBSRC (BB/000306; BB/M006557) and CRUK (C12057/A19430).

Author information

Authors and Affiliations

Authors

Contributions

S.S. designed and performed experiments, analysed data and wrote the manuscript. B.R.J. performed experiments and analysed data. I.Y. performed the virtual high-throughput screening and modelling. S.K.W. and C.R. synthesized tested compounds. R.F. and A.W. designed and performed experiments, analysed data and wrote the manuscript.

Corresponding authors

Correspondence to Richard Foster or Adrian Whitehouse.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1–14 (PDF 34683 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schumann, S., Jackson, B., Yule, I. et al. Targeting the ATP-dependent formation of herpesvirus ribonucleoprotein particle assembly as an antiviral approach. Nat Microbiol 2, 16201 (2017). https://doi.org/10.1038/nmicrobiol.2016.201

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.201

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing