Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fungi use the SakA (HogA) pathway for phytochrome-dependent light signalling

Abstract

Stress-sensing in fungi depends on a signalling cascade comprised of a two-component phosphorylation relay plus a subsequent MAP kinase cascade to trigger gene expression. Besides osmotic or oxidative stress, fungi sense many other environmental factors, one of which is light1,2. Light controls morphogenetic pathways but also the production of secondary metabolites such as penicillin. Here we show that phytochrome-dependent light signalling in Aspergillus nidulans involves the stress-sensing and osmosensing signalling pathway. In a screening for ‘blind’ mutants, the MAP kinase SakA (also known as HogA) was identified by whole-genome sequencing. The phytochrome FphA physically interacted with the histidine-containing phosphotransfer protein YpdA and caused light-dependent phosphorylation of the MAP kinase SakA and its shuttling into nuclei. In the absence of phytochrome, SakA still responded to osmotic stress but not to light. The SakA pathway thus integrates several stress factors and can be considered to be a hub for environmental signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isolation of an A. nidulans ‘blind’ mutant.
Figure 2: Impact of the SakA signalling pathway on light sensing.
Figure 3: Phytochrome interacts with the histidine-containing phophotransfer protein YpdA.
Figure 4: SakA shuttling and phosphorylation after light exposure.

Similar content being viewed by others

References

  1. Rodriguez-Romero, J., Hedtke, M., Kastner, C., Müller, S. & Fischer, R. Fungi, hidden in soil or up in the air: light makes a difference. Annu. Rev. Microbiol. 64, 585–510 (2010).

    Article  CAS  Google Scholar 

  2. Dasgupta, A., Fuller, K. K., Dunlap, J. C. & Loros, J. J. Seeing the world differently: variability in the photosensory mechanisms of two model fungi. Environ. Microbiol. 18, 5–20 (2015).

    Article  Google Scholar 

  3. Qiu, L., Wang, J. J., Chu, Z. J., Ying, S. H. & Feng, M. G. Phytochrome controls conidiation in response to red/far-red light and daylight length and regulates multistress tolerance in Beauveria bassiana. Environ Microbiol 16, 2316–2328 (2014).

    Article  CAS  Google Scholar 

  4. Yeh, K.-C., Wu, S.-H., Murphy, J. T. & Lagarias, J. C. A cyanobacterial phytochrome two-component light sensory system. Science 277, 1505–1508 (1997).

    Article  CAS  Google Scholar 

  5. Karniol, B., Wagner, J. R., Walker, J. M. & Vierstra, R. D. Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors. Biochem. J. 392, 102–116 (2005).

    Article  Google Scholar 

  6. Bhoo, S.-H., Davis, S. J., Walker, J., Karniol, B. & Vierstra, R. D. Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore. Nature 414, 776–779 (2001).

    Article  CAS  Google Scholar 

  7. Galagan, J. E. et al. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438, 1105–1115 (2005).

    Article  CAS  Google Scholar 

  8. Blumenstein, A. et al. The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr. Biol. 15, 1833–1838 (2005).

    Article  CAS  Google Scholar 

  9. Purschwitz, J. et al. Functional and physical interaction of blue and red-light sensors in Aspergillus nidulans. Curr. Biol. 18, 255–259 (2008).

    Article  CAS  Google Scholar 

  10. Hedtke, M. et al. Light-dependent gene activation in Aspergillus nidulans is strictly dependent on phytochrome and involves the interplay of phytochrome and white collar-regulated histone H3 acetylation. Mol. Microbiol. 97, 733–745 (2015).

    Article  CAS  Google Scholar 

  11. Ruger-Herreros, C. et al. Regulation of conidiation by light in Aspergillus nidulans. Genetics 188, 809–822 (2011).

    Article  CAS  Google Scholar 

  12. Kawasaki, L., Sanchez, O., Shiozaki, K. & Aguirre, J. SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Mol. Microbiol. 45, 1153–1163 (2002).

    Article  CAS  Google Scholar 

  13. Furukawa, K., Hoshi, Y., Maeda, T., Nakajima, T. & Abe, K. Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress. Mol. Microbiol. 56, 1246–1261 (2005).

    Article  CAS  Google Scholar 

  14. Mooney, J. L. & Yager, L. N. Light is required for conidiation in Aspergillus nidulans. Genes Dev. 4, 1473–1482 (1990).

    Article  CAS  Google Scholar 

  15. Duran, R., Cary, J. W. & Calvo, A. M. Role of the osmotic stress regulatory pathway in morphogenesis and secondary metabolism in filamentous fungi. Toxins 2, 367–381 (2010).

    Article  CAS  Google Scholar 

  16. Hohmann, S., Krantz, M. & Nordlander, B. Yeast osmoregulation. Methods Enzymol. 428, 29–45 (2007).

    Article  CAS  Google Scholar 

  17. Lara-Rojas, F., Sánchez, O., Kawasaki, L. & Aguirre, J. Aspergillus nidulans transcription factor AtfA interacts with the MAPK SakA to regulate general stress responses, development and spore functions. Mol. Microbiol. 80, 436–454 (2011).

    Article  CAS  Google Scholar 

  18. Vargas-Pérez, I., Sánchez, O., Kawasaki, L., Georgellis, D. & Aguirre, J. Response regulators SrrA and SskA are central components of a phosphorelay system involved in stress signal transduction and asexual sporulation in Aspergillus nidulans. Eukaryot. Cell 6, 1570–1583 (2007).

    Article  Google Scholar 

  19. Liscum, E. & Hangarter, R. P. Photomorphogenic mutants of Arabidopsis thaliana reveal activities of multiple photosensory systems during light-stimulated apical-hook opening. Planta 191, 214–221 (1993).

    Article  CAS  Google Scholar 

  20. Brandt, S., von Stetten, D., Günther, M., Hildebrandt, P. & Frankenberg-Dinkel, N. The fungal phytochrome FphA from Aspergillus nidulans. J. Biol. Chem. 283, 34605–34614 (2008).

    Article  CAS  Google Scholar 

  21. Azuma, N. et al. In vitro analysis of His-Asp phosphorelays in Aspergillus nidulans: The first direct biochemical evidence for the existence of His-Asp phosphotransfer system in filamentous fungi. Biosci. Biotech. Biochem. 71, 2493–2502 (2007).

    Article  CAS  Google Scholar 

  22. Röhrig, J., Kastner, C. & Fischer, R. Light inhibits spore germination through phytochrome in Aspergillus nidulans. Curr. Genet. 59, 55–62 (2013).

    Article  Google Scholar 

  23. Fuller, K. K., Ringelberg, C. S., Loros, J. J. & Dunlap, J. C. The fungal pathogen Aspergillus fumigatus regulates growth, metabolism, and stress resistance in response to light. MBio 4, e00142–e00113 (2013).

    Article  Google Scholar 

  24. Rauscher, S., Pacher, S., Hedtke, M., Kniemeyer, O. & Fischer, R. A phosphorylation code of the Aspergillus nidulans global regulator VelvetA (VeA) determines specific functions. Mol Microbiol in press. (2015).

  25. Käfer, E. Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv. Genet. 19, 33–131 (1977).

    Article  Google Scholar 

  26. Yelton, M. M., Hamer, J. E. & Timberlake, W. E. Transformation of Aspergillus nidulans by using a trpC plasmid. Proc. Natl Acad. Sci. USA 81, 1470–1474 (1984).

    Article  CAS  Google Scholar 

  27. Sambrook, J. & Russel, D. W. Molecular Cloning: A laboratory manual (Cold Spring Harbor Laboratory Press, 1999).

    Google Scholar 

  28. Vienken, K. & Fischer, R. The Zn(II)2Cys6 putative transcription factor NosA controls fruiting body formation in Aspergillus nidulans. Mol. Microbiol. 61, 544–554 (2006).

    Article  CAS  Google Scholar 

  29. Herr, A. & Fischer, R. Improvement of Aspergillus nidulans penicillin production by targeting AcvA to peroxisomes. Metab Eng 25, 131–139 (2014).

    Article  CAS  Google Scholar 

  30. Toews, M. W. et al. Establishment of mRFP1 as fluorescent marker in Aspergillus nidulans and construction of expression vectors for high-throughput protein tagging using recombination in Escherichia coli (GATEWAY). Curr. Genet. 45, 383–389 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Science Foundation (DFG, FOR 1334). Z.Y. was supported by the China Scholarship Council (CSC). We thank E. Wohlmann and B. Schreckenberger for technical assistance and great help with immunostaining. We also would like to thank J. Hübner and C. Streng for some assistance. We are extremely grateful to J. Aguirre (UNAM, Mexico City) for sending us several A. nidulans strains.

Author information

Authors and Affiliations

Authors

Contributions

Z.Y. planned and performed the experiments and analysed the data. O.A. was responsible for whole-genome sequencing and analysed the sequencing data. R.F. planned the experiments, analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Reinhard Fischer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1-8 (PDF 4246 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Armant, O. & Fischer, R. Fungi use the SakA (HogA) pathway for phytochrome-dependent light signalling. Nat Microbiol 1, 16019 (2016). https://doi.org/10.1038/nmicrobiol.2016.19

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.19

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing