Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Staphylococcus aureus inactivates daptomycin by releasing membrane phospholipids

Abstract

Daptomycin is a bactericidal antibiotic of last resort for serious infections caused by methicillin-resistant Staphylococcus aureus (MRSA)1,2. Although resistance is rare, treatment failure can occur in more than 20% of cases3,4 and so there is a pressing need to identify and mitigate factors that contribute to poor therapeutic outcomes. Here, we show that loss of the Agr quorum-sensing system, which frequently occurs in clinical isolates, enhances S. aureus survival during daptomycin treatment. Wild-type S. aureus was killed rapidly by daptomycin, but Agr-defective mutants survived antibiotic exposure by releasing membrane phospholipids, which bound and inactivated the antibiotic. Although wild-type bacteria also released phospholipid in response to daptomycin, Agr-triggered secretion of small cytolytic toxins, known as phenol soluble modulins, prevented antibiotic inactivation. Phospholipid shedding by S. aureus occurred via an active process and was inhibited by the β-lactam antibiotic oxacillin, which slowed inactivation of daptomycin and enhanced bacterial killing. In conclusion, S. aureus possesses a transient defence mechanism that protects against daptomycin, which can be compromised by Agr-triggered toxin production or an existing therapeutic antibiotic.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Agr-defective S. aureus survives daptomycin exposure by inactivating the antibiotic.
Figure 2: Agr-defective S. aureus inactivates daptomycin by shedding membrane phospholipid.
Figure 3: Alpha phenol soluble modulins prevent daptomycin inactivation by S. aureus.
Figure 4: Oxacillin prevents lipid shedding and daptomycin inactivation.

References

  1. Steenbergen, J. N., Alder, J., Thorne, G. M. & Tally, F. P. Daptomycin: a lipopeptide antibiotic for the treatment of serious Gram-positive infections. J. Antimicrob. Chemother. 55, 283–288 (2005).

    Article  CAS  Google Scholar 

  2. Boucher, H., Miller, L. G. & Razonable, R. R. Serious infections caused by methicillin-resistant Staphylococcus aureus. Clin. Infect. Dis. 51, S183–S197 (2010).

    Article  CAS  Google Scholar 

  3. Stefani, S. et al. Insights and clinical perspectives of daptomycin resistance in Staphylococcus aureus: a review of the available evidence. Int. J. Antimicrob. Agents. 46, 278–289 (2015).

    Article  CAS  Google Scholar 

  4. Seaton, R. A. et al. Evaluation of effectiveness and safety of high-dose daptomycin: results from patients included in the European Cubicin® outcomes registry and experience. Adv. Ther. 12, 1192–1205 (2015).

    Article  Google Scholar 

  5. Novick, R. P. et al. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J. 12, 3967–3975 (1993).

    Article  CAS  Google Scholar 

  6. Novick, R. P. & Geisinger, E. Quorum sensing in Staphylococci. Annu. Rev. Genet. 42, 541–564 (2008).

    Article  CAS  Google Scholar 

  7. Sakoulas, G. et al. Accessory gene regulator (agr) locus in geographically diverse Staphylococcus aureus isolates with reduced susceptibility to vancomycin. Antimicrob. Agents Chemother. 46, 1492–1502 (2002).

    Article  CAS  Google Scholar 

  8. Fowler, V. G. Jr et al. Persistent bacteremia due to methicillin-resistant Staphylococcus aureus infection is associated with agr dysfunction and low-level in vitro resistance to thrombin-induced platelet microbicidal protein. J. Infect. Dis. 190, 1140–1149 (2004).

    Article  CAS  Google Scholar 

  9. Mwangi, M. M. et al. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc. Natl Acad. Sci. USA 104, 9451–9456 (2007).

    Article  CAS  Google Scholar 

  10. Traber, K. E. et al. agr function in clinical Staphylococcus aureus isolates. Microbiology 154, 2265–2274 (2008).

    Article  CAS  Google Scholar 

  11. Laabei, M. et al. Evolutionary trade-offs underlie the multi-faceted virulence of Staphylococcus aureus. PLoS Biol. 13, e1002229 (2015).

    Article  Google Scholar 

  12. Schweizer, M. L. et al. Increased mortality with accessory gene regulator (agr) dysfunction in Staphylococcus aureus among bacteremic patients. Antimicrob. Agents Chemother. 55, 1082–1087 (2011).

    Article  CAS  Google Scholar 

  13. Paulander, W. et al. Antibiotic-mediated selection of quorum-sensing-negative Staphylococcus aureus. mBio. 3, e00459 (2013).

    PubMed  Google Scholar 

  14. Painter, K. L., Krishna, A., Wigneshweraraj, S. & Edwards, A. M. What role does the quorum-sensing accessory gene regulator system play during Staphylococcus aureus bacteremia? Trends Microbiol. 22, 676–685 (2014).

    Article  CAS  Google Scholar 

  15. Credito, K., Lin, G. & Appelbaum, P. C. Activity of daptomycin alone and in combination with rifampin and gentamicin against Staphylococcus aureus assessed by time–kill methodology. Antimicrob. Agents Chemother. 51, 1504–1507 (2007).

    Article  CAS  Google Scholar 

  16. Marco, F. et al. Daptomycin is effective in treatment of experimental endocarditis due to methicillin-resistant and glycopeptide-intermediate Staphylococcus aureus. Antimicrob. Agents Chemother. 52, 2538–2543 (2008).

    Article  CAS  Google Scholar 

  17. Jiang, J. H. & Peleg, A. Y. Daptomycin-nonsusceptible Staphylococcus aureus: the role of combination therapy with daptomycin and gentamicin. Genes 6, 1256–1267 (2015).

    Article  CAS  Google Scholar 

  18. Rauch, S. et al. Abscess formation and alpha-hemolysin induced toxicity in a mouse model of Staphylococcus aureus peritoneal infection. Infect. Immun. 80, 3721–3732 (2012).

    Article  CAS  Google Scholar 

  19. Mortin, L. I. et al. Rapid bactericidal activity of daptomycin against methicillin-resistant and methicillin-susceptible Staphylococcus aureus peritonitis in mice as measured with bioluminescent bacteria. Antimicrob. Agents Chemother. 51, 1787–1794 (2007).

    Article  CAS  Google Scholar 

  20. Wale, L. J., Shelton, A. P. & Greenwood, D. Scanning electron microscopy of Staphylococcus aureus and Enterococcus faecalis exposed to daptomycin. J. Med. Microbiol. 30, 45–49 (1989).

    Article  CAS  Google Scholar 

  21. Cotroneo, N., Harris, R., Perlmutter, N., Beveridge, T. & Silverman, J. A. Daptomycin exerts bactericidal activity without lysis of Staphylococcus aureus. Antimicrob. Agents Chemother. 52, 2223–2225 (2008).

    Article  CAS  Google Scholar 

  22. Muraih, J. K., Pearson, A., Silverman, J. & Palmer, M. Oligomerization of daptomycin on membranes. Biochim. Biophys. Acta. 1808, 1154–1160 (2011).

    Article  CAS  Google Scholar 

  23. Chen, Y. F., Sun, T. L., Sun, Y. & Huang, H. W. Interaction of daptomycin with lipid bilayers: a lipid extracting effect. Biochemistry 53, 5384–5392 (2014).

    Article  CAS  Google Scholar 

  24. Mishra, N. N. & Bayer, A. S. Correlation of cell membrane lipid profiles with daptomycin resistance in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 57, 1082–1085 (2013).

    Article  CAS  Google Scholar 

  25. Silverman, J. A., Mortin, L. I., VanPraagh, A. D. G., Li, T. & Alder, J. Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact. J. Infect. Dis. 191, 2149–2152 (2005).

    Article  CAS  Google Scholar 

  26. Manning, A. J. & Kuehn, M. J. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC. Microbiol. 11, 258 (2011).

    Article  CAS  Google Scholar 

  27. Wang, R. et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat. Med. 13, 1510–1514 (2007).

    Article  CAS  Google Scholar 

  28. Queck, S. Y. et al. RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Mol. Cell 32, 150–158 (2008).

    Article  CAS  Google Scholar 

  29. Rand, K. H. & Houck, H. J. Synergy of daptomycin with oxacillin and other β-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 48, 2871–2875 (2004).

    Article  CAS  Google Scholar 

  30. Berti, A. D. et al. Penicillin binding protein 1 is important in the compensatory response of Staphylococcus aureus to daptomycin-induced membrane damage and is a potential target for β-lactam–daptomycin synergy. Antimicrob. Agents Chemother. 60, 451–458 (2015).

    Article  Google Scholar 

  31. Pader, V., James, E. H., Painter, K. L., Wigneshweraraj, S. & Edwards, A. M. The Agr quorum-sensing system regulates fibronectin binding but not hemolysis in the absence of a functional electron transport chain. Infect. Immun. 82, 4337–4347 (2014).

    Article  Google Scholar 

  32. Monk, I. R., Shah, I. M., Xu, M., Tan, M. W. & Foster, T. J. Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. mBio. 3, e00277 (2012).

    Article  CAS  Google Scholar 

  33. Nicod, S. S. et al. Systematic mutational analysis of the LytTR DNA binding domain of Staphylococcus aureus virulence gene transcription factor AgrA. Nucleic Acids Res. 42, 12523–12536 (2014).

    Article  CAS  Google Scholar 

  34. James, E. H., Edwards, A. M. & Wigneshweraraj, S. Transcriptional downregulation of agr expression in Staphylococcus aureus during growth in human serum can be overcome by constitutively active mutant forms of the sensor kinase AgrC. FEMS Microbiol. Lett. 349, 153–162 (2013).

    Article  CAS  Google Scholar 

  35. Jorgensen, J. H. et al. in Manual of Clinical Microbiology Ch. 118, 1526–1543 (ASM Press, 1999).

  36. Wiegand, I., Hilpert, K. & Hancock, R. E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3, 163–175 (2008).

    Article  CAS  Google Scholar 

  37. Diederen, B. M., van Duijn, I., Willemse, P. & Kluytmans, J. A. In vitro activity of daptomycin against methicillin-resistant Staphylococcus aureus, including heterogeneously glycopeptide-resistant strains. Antimicrob. Agents Chemother. 50, 3189–3191 (2006).

    Article  CAS  Google Scholar 

  38. Sader, H. S., Fritsche, T. R. & Jones, R. N. Daptomycin bactericidal activity and correlation between disk and broth microdilution method results in testing of Staphylococcus aureus strains with decreased susceptibility to vancomycin. Antimicrob. Agents Chemother. 50, 2330–2336 (2006).

    Article  CAS  Google Scholar 

  39. Lefort, A. et al. Bactericidal activity of gentamicin against Enterococcus faecalis in vitro and in vivo. Antimicrob. Agents Chemother. 44, 2077–2080 (2000).

    Article  CAS  Google Scholar 

  40. Louie, A. et al. Pharmacodynamics of daptomycin in a murine thigh model of Staphylococcus aureus infection. Antimicrob. Agents Chemother. 45, 845–851 (2001).

    Article  CAS  Google Scholar 

  41. Safdar, N., Andes, D. & Craig, W. A. In vivo pharmacodynamic activity of daptomycin. Antimicrob. Agents Chemother. 48, 63–68 (2004).

    Article  CAS  Google Scholar 

  42. Rybak, M. J. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin. Infect. Dis. 42, S35–S39 (2006).

    Article  CAS  Google Scholar 

  43. Joukhadar, C. et al. Lack of bactericidal antagonism or synergism in vitro between oxacillin and vancomycin against methicillin-susceptible strains of Staphylococcus aureus. Antimicrob. Agents Chemother. 54, 773–777 (2010).

    Article  CAS  Google Scholar 

  44. Johnson, P. J. & Levin, B. R. Pharmacodynamics, population dynamics, and the evolution of persistence in Staphylococcus aureus. PLoS Genet. 9, e1003123 (2013).

    Article  CAS  Google Scholar 

  45. Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).

    Article  Google Scholar 

  46. Zhou, X. et al. Bacterial division. Mechanical crack propagation drives millisecond daughter cell separation in Staphylococcus aureus. Science 348, 574–578 (2015).

    Article  CAS  Google Scholar 

  47. Bligh, E. S. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    Article  CAS  Google Scholar 

  48. Nahaie, M. R., Goodfellow, M., Minnikin, D. E. & Hájek, V. Polar lipid and isoprenoid quinone composition in the classification of Staphylococcus. J. Gen. Microbiol. 130, 2427–2437 (1984).

    CAS  PubMed  Google Scholar 

  49. Mukhopadhyay, K. et al. In vitro susceptibility of Staphylococcus aureus to thrombin-induced platelet microbicidal protein-1 (tPMP-1) is influenced by cell membrane phospholipid composition and asymmetry. Microbiology 153, 1187–1197 (2007).

    Article  CAS  Google Scholar 

  50. Rouser, G., Siakotos, A. N. & Fleischer, S. Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids 1, 85–86 (1966).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the following for providing bacterial strains, phage or reagents: J.M. Van Dijl (University Medical Center Groningen), M. Otto (NIH, Bethesda), R. Massey (University of Bath), M. Horsburgh (University of Liverpool), T. Foster (Trinity College Dublin) and the Network on Antimicrobial Resistance in Staphylococcus aureus (NARSA) Program under NIAID/NIH contract no. HHSN272200700055C. L. Haigh (Imperial College) is thanked for analysing modified daptomycin samples. A. Nobbs (University of Bristol) is acknowledged for helpful discussions and comments on the manuscript. A.M.E. acknowledges funding from the Department of Medicine, Imperial College. S.W. acknowledges funding from the BBSRC and Wellcome Trust. K.L.P. is supported by a PhD studentship from the Faculty of Medicine, Imperial College London. S.H. is supported by a scholarship from the Inlaks Shivdasani Foundation. T.B.C. is a Sir Henry Dale Fellow jointly funded by the Wellcome Trust and Royal Society (grant no. 107660/Z/15/Z).

Author information

Authors and Affiliations

Authors

Contributions

V.P., S.W., T.B.C. and A.M.E. designed the experiments. V.P., S.H., T.B.C. and A.M.E. performed experiments. K.L.P. generated and characterized mutants. V.P., S.H., T.B.C. and A.M.E. analysed data. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Andrew M. Edwards.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Tables 1–4, Supplementary Figures 1–22, Supplementary Discussion and Supplementary References (PDF 2702 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pader, V., Hakim, S., Painter, K. et al. Staphylococcus aureus inactivates daptomycin by releasing membrane phospholipids. Nat Microbiol 2, 16194 (2017). https://doi.org/10.1038/nmicrobiol.2016.194

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.194

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing