Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs

An Erratum to this article was published on 07 November 2016

Abstract

Helicobacter pylori specifically colonizes the human gastric epithelium and is the major causative agent for ulcer disease and gastric cancer development. Here, we identify members of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family as receptors of H. pylori and show that HopQ is the surface-exposed adhesin that specifically binds human CEACAM1, CEACAM3, CEACAM5 and CEACAM6. HopQ–CEACAM binding is glycan-independent and targeted to the N-domain. H. pylori binding induces CEACAM1-mediated signalling, and the HopQ–CEACAM1 interaction enables translocation of the virulence factor CagA into host cells and enhances the release of pro-inflammatory mediators such as interleukin-8. Based on the crystal structure of HopQ, we found that a β-hairpin insertion (HopQ-ID) in HopQ's extracellular 3+4 helix bundle domain is important for CEACAM binding. A peptide derived from this domain competitively inhibits HopQ-mediated activation of the Cag virulence pathway, as genetic or antibody-mediated abrogation of the HopQ function shows. Together, our data suggest the HopQ–CEACAM1 interaction to be a potentially promising novel therapeutic target to combat H. pylori-associated diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: H. pylori employs the N-terminal domain of human CEACAM1 and binds CEACAM5 and CEACAM6 but not CEACAM8.
Figure 2: H. pylori binding to CEACAM1 orthologues.
Figure 3: H. pylori binds to various human CEACAMs via HopQ.
Figure 4: X-ray structure and binding properties of the HopQ adhesin domain (HopQAD).
Figure 5: Deletion of hopQ in H. pylori leads to reduced bacterial cell adhesion and abrogates CagA delivery, IL-8 release and cell elongation.
Figure 6: H. pylori colonization of rat stomach depends on HopQ.

Similar content being viewed by others

References

  1. Salama, N. R., Hartung, M. L. & Müller, A. Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori. Microbiology 11, 385–399 (2013).

    CAS  PubMed  Google Scholar 

  2. Atherton, J. C. & Blaser, M. J. Coadaptation of Helicobacter pylori and humans: ancient history, modern implications. J. Clin. Invest. 119, 2475–2487 (2009).

    Article  CAS  Google Scholar 

  3. Montecucco, C. & Rappuoli, R. Living dangerously: how Helicobacter pylori survives in the human stomach. Mol. Cell. Biol. 2, 457–466 (2001).

    CAS  Google Scholar 

  4. Lindén, S., Mahdavi, J., Hedenbro, J., Borén, T. & Carlstedt, I. Effects of pH on Helicobacter pylori binding to human gastric mucins: identification of binding to non-MUC5AC mucins. Biochem. J. 384, 263–270 (2004).

    Article  Google Scholar 

  5. Ilver, D. et al. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279, 373–377 (1998).

    Article  CAS  Google Scholar 

  6. Mahdavi, J. et al. Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297, 573–578 (2002).

    Article  CAS  Google Scholar 

  7. Solnick, J. V., Hansen, L. M., Salama, N. R., Boonjakuakul, J. K. & Syvanen, M. Modification of Helicobacter pylori outer membrane protein expression during experimental infection of rhesus macaques. Proc. Natl Acad. Sci. USA 101, 2106–2111 (2004).

    Article  CAS  Google Scholar 

  8. Hammarström, S. The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin. Cancer Biol. 9, 67–81 (1999).

    Article  Google Scholar 

  9. Öbrink, B. On the role of CEACAM1 in cancer. Lung Cancer 60, 309–312 (2008).

    Article  Google Scholar 

  10. Gray-Owen, S. D. & Blumberg, R. S. CEACAM1: contact-dependent control of immunity. Nat. Rev. Immunol. 6, 433–446 (2006).

    Article  CAS  Google Scholar 

  11. Voges, M., Bachmann, V., Kammerer, R., Gophna, U. & Hauck, C. R. CEACAM1 recognition by bacterial pathogens is species-specific. BMC Microbiol. 10, 117 (2010).

    Article  Google Scholar 

  12. Heneghan, M. A. et al. Effect of host Lewis and ABO blood group antigen expression on Helicobacter pylori colonisation density and the consequent inflammatory response. FEMS Immunol. Med. Microbiol. 20, 257–266 (1998).

    Article  CAS  Google Scholar 

  13. Virji, M., Watt, S. M., Barker, S., Makepeace, K. & Doyonnas, R. The N-domain of the human CD66a adhesion molecule is a target for Opa proteins of Neisseria meningitidis and Neisseria gonorrhoeae. Mol. Microbiol. 22, 929–939 (1996).

    Article  CAS  Google Scholar 

  14. Hill, D. J. & Virji, M. A novel cell-binding mechanism of Moraxella catarrhalis ubiquitous surface protein UspA: specific targeting of the N-domain of carcinoembryonic antigen-related cell adhesion molecules by UspA1. Mol. Microbiol. 48, 117–129 (2003).

    Article  CAS  Google Scholar 

  15. Kuespert, K., Roth, A. & Hauck, C. R. Neisseria meningitidis has two independent modes of recognizing its human receptor CEACAM1. PLoS ONE 6, e14609 (2011).

    Article  Google Scholar 

  16. Peek, R. M. Helicobacter pylori infection and disease: from humans to animal models. Dis. Model. Mech. 1, 50–55 (2008).

    Article  CAS  Google Scholar 

  17. Icatlo, F. C., Goshima, H., Kimura, N. & Kodama, Y. Acid-dependent adherence of Helicobacter pylori urease to diverse polysaccharides. Gastroenterology 119, 358–367 (2000).

    Article  CAS  Google Scholar 

  18. Cao, P. & Cover, T. L. Two different families of hopQ alleles in Helicobacter pylori. J. Clin. Microbiol. 40, 4504–4511 (2002).

    Article  CAS  Google Scholar 

  19. Ohno, T. et al. Relationship between Helicobacter pylori hopQ genotype and clinical outcome in Asian and Western populations. J. Gastroenterol. Hepatol. 24, 462–468 (2009).

    Article  Google Scholar 

  20. Alm, R. A. et al. Comparative genomics of Helicobacter pylori: analysis of the outer membrane protein families. Infect. Immun. 68, 4155–4168 (2000).

    Article  CAS  Google Scholar 

  21. Moonens, K. et al. Structural insights into polymorphic ABO glycan binding by Helicobacter pylori. Cell Host Microbe 19, 55–66 (2016).

    Article  CAS  Google Scholar 

  22. Rossez, Y. et al. The lacdiNAc-specific adhesin LabA mediates adhesion of Helicobacter pylori to human gastric mucosa. J. Infect. Dis. 210, 1286–1295 (2014).

    Article  CAS  Google Scholar 

  23. Singer, B. B. et al. Deregulation of the CEACAM expression pattern causes undifferentiated cell growth in human lung adenocarcinoma cells. PLoS ONE 5, e8747 (2010).

    Article  Google Scholar 

  24. Muenzner, P., Bachmann, V., Zimmermann, W., Hentschel, J. & Hauck, C. R. Human-restricted bacterial pathogens block shedding of epithelial cells by stimulating integrin activation. Science 329, 1197–1201 (2010).

    Article  CAS  Google Scholar 

  25. Slevogt, H. et al. CEACAM1 inhibits Toll-like receptor 2-triggered antibacterial responses of human pulmonary epithelial cells. Nat. Immunol. 9, 1270–1278 (2008).

    Article  CAS  Google Scholar 

  26. Belogolova, E. et al. Helicobacter pylori outer membrane protein HopQ identified as a novel T4SS-associated virulence factor. Cell Microbiol. 15, 1896–1912 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mahler, M. et al. Experimental Helicobacter pylori infection induces antral-predominant, chronic active gastritis in hispid cotton rats (Sigmodon hispidus). Helicobacter 10, 332–344 (2005).

    Article  Google Scholar 

  28. Chang, Y. J. et al. Mechanisms for Helicobacter pylori CagA-induced cyclin D1 expression that affect cell cycle. Cell Microbiol. 8, 1740–1752 (2006).

    Article  CAS  Google Scholar 

  29. Muenzner, P., Naumann, M., Meyer, T. F. & Gray-Owen, S. D. Pathogenic Neisseria trigger expression of their carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1; previously CD66a) receptor on primary endothelial cells by activating the immediate early response transcription factor, nuclear factor-κB. J. Biol. Chem. 276, 24331–24340 (2001).

    Article  CAS  Google Scholar 

  30. Olbermann, P. et al. A global overview of the genetic and functional diversity in the Helicobacter pylori cag pathogenicity island. PLoS Genet. 6, e1001069 (2010).

    Article  Google Scholar 

  31. Suerbaum, S. & Josenhans, C. Helicobacter pylori evolution and phenotypic diversification in a changing host. Nat. Rev. Microbiol. 5, 441–452 (2007).

    Article  CAS  Google Scholar 

  32. Baltrus, D. A. et al. The complete genome sequence of Helicobacter pylori strain G27. J. Bacteriol. 191, 447–448 (2009).

    Article  CAS  Google Scholar 

  33. Arnold, I. C. et al. Tolerance rather than immunity protects from Helicobacter pylori-induced gastric preneoplasia. Gastroenterology 140, 199–209 (2011).

    Article  CAS  Google Scholar 

  34. Lee, A. et al. A standardized mouse model of Helicobacter pylori infection: introducing the Sydney strain. Gastroenterology 112, 1386–1397 (1997).

    Article  CAS  Google Scholar 

  35. Lundin, A. et al. The NudA protein in the gastric pathogen Helicobacter pylori is an ubiquitous and constitutively expressed dinucleoside polyphosphate hydrolase. J. Biol. Chem. 278, 12574–12578 (2003).

    Article  CAS  Google Scholar 

  36. Atherton, J. C. et al. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J. Biol. Chem. 270, 17771–17777 (1995).

    Article  CAS  Google Scholar 

  37. Cover, T. L., Dooley, C. P. & Blaser, M. J. Characterization of and human serologic response to proteins in Helicobacter pylori broth culture supernatants with vacuolizing cytotoxin activity. Infect. Immun. 58, 603–610 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Backert, S., Muller, E. C., Jungblut, P. R. & Meyer, T. F. Tyrosine phosphorylation patterns and size modification of the Helicobacter pylori CagA protein after translocation into gastric epithelial cells. Proteomics 1, 608–617 (2001).

    Article  CAS  Google Scholar 

  39. Vermoote, M. et al. Genome sequence of Helicobacter suis supports its role in gastric pathology. Vet. Res. 42, 51 (2011).

    Article  CAS  Google Scholar 

  40. Haesebrouck, F. et al. Non-Helicobacter pylori Helicobacter species in the human gastric mucosa: a proposal to introduce the terms H. heilmannii sensu lato and sensu stricto. Helicobacter 16, 339–340 (2011).

    Article  Google Scholar 

  41. Schott, T., Kondadi, P. K., Hanninen, M. L. & Rossi, M. Comparative genomics of Helicobacter pylori and the human-derived Helicobacter bizzozeronii CIII-1 strain reveal the molecular basis of the zoonotic nature of non-pylori gastric Helicobacter infections in humans. BMC Genomics 12, 534 (2011).

    Article  CAS  Google Scholar 

  42. Tegtmeyer, N. et al. Characterisation of worldwide Helicobacter pylori strains reveals genetic conservation and essentiality of serine protease HtrA. Mol. Microbiol. 99, 925–944 (2016).

    Article  CAS  Google Scholar 

  43. Singer, B. B. et al. Soluble CEACAM8 interacts with CEACAM1 inhibiting TLR2-triggered immune responses. PLoS ONE 9, e94106 (2014).

    Article  Google Scholar 

  44. Studier, F. W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    Article  CAS  Google Scholar 

  45. Hojo, H . & Onishi, Y. [Case suspected to be atypical diffuse myeloma]. Nihon Rinsho 35, 2659–2662 (1977).

    CAS  PubMed  Google Scholar 

  46. Romano, M., Razandi, M., Sekhon, S., Krause, W. J. & Ivey, K. J. Human cell line for study of damage to gastric epithelial cells in vitro. J. Lab. Clin. Med. 111, 430–440 (1988).

    CAS  PubMed  Google Scholar 

  47. Mueller, D. et al. c-Src and c-Abl kinases control hierarchic phosphorylation and function of the CagA effector protein in Western and East Asian Helicobacter pylori strains. J. Clin. Invest. 122, 1553–1566 (2012).

    Article  CAS  Google Scholar 

  48. Hytönen, J., Haataja, S. & Finne, J. Use of flow cytometry for the adhesion analysis of Streptococcus pyogenes mutant strains to epithelial cells: investigation of the possible role of surface pullulanase and cysteine protease, and the transcriptional regulator Rgg. BMC Microbiol. 6, 18 (2006).

    Article  Google Scholar 

  49. Krauth-Siegel, R. L. et al. Crystallization and preliminary crystallographic analysis of trypanothione reductase from Trypanosoma cruzi, the causative agent of Chagas’ disease. FEBS Lett. 317, 105–108 (1993).

    Article  CAS  Google Scholar 

  50. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235–242 (2011).

    Article  CAS  Google Scholar 

  51. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  52. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  53. Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D 67, 355–367 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Koch, J. Lind, B. Maranca-Hüwel and B. Gobs-Hevelke for technical support, C. Konrad and J. Fischer for support with rat experiments and M. Roskrow for discussions and revision of the manuscript. K.M. and H.R. acknowledge use of the Soleil synchrotron, Gif-sur-Yvette, France, under proposal 20,131,370 and support by VIB and the Flanders Science Foundation (FWO) through the Odysseus programme, a postdoctoral fellowship and Hercules funds UABR/09/005. This work was supported by the German Centre for Infection Research, partner site Munich, to M.G., by the BMBF GO-Bio Program to M.G., by the BMBF 01EO1002 to E.K., the Mercator Research Center Ruhr An2012-0070 to B.B.S., the German Science Foundation CRC-796 (B10) and CRC-1181 (A04) to S.B., and the Collaborative Research Center/Transregio 124, Project A5 to H.S.

Author information

Authors and Affiliations

Authors

Contributions

A.J., T.K., K.M., A.D., C.I.A., N.T., B.K., N.C.B., A.S. and B.B.S. performed the experiments. S.A.S., D.J.H., R.M., B.B.S., R.H., V.K., E.K., H.S. and C.R.H. provided reagents and tools. A.J., B.B.S., H.R., D.H.B., R.M.-L., S.B. and M.G. conceived the experiments, analysed the data and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Markus Gerhard.

Ethics declarations

Competing interests

B.K. and T.K. are employees and Shareholders of ImevaX GmbH. M.G., A.J., B.B.S., S.B., H.R., K.M. and T.K. are named as inventors on a patent application related to HopQ. The other authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1–6, Supplementary Tables 1–3, Original gel images (PDF 14099 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javaheri, A., Kruse, T., Moonens, K. et al. Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs. Nat Microbiol 2, 16189 (2017). https://doi.org/10.1038/nmicrobiol.2016.189

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.189

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology