Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA

An Erratum to this article was published on 31 October 2016


Helicobacter pylori (Hp) strains that carry the cag type IV secretion system (cag-T4SS) to inject the cytotoxin-associated antigen A (CagA) into host cells are associated with peptic ulcer disease and gastric adenocarcinoma. CagA translocation by Hp is mediated by β1 integrin interaction of the cag-T4SS. However, other cellular receptors or bacterial outer membrane adhesins essential for this process are unknown. Here, we identify the HopQ protein as a genuine Hp adhesin, exploiting defined members of the carcinoembryonic antigen-related cell adhesion molecule family (CEACAMs) as host cell receptors. HopQ binds the amino-terminal IgV-like domain of human CEACAM1, CEACAM3, CEACAM5 or CEACAM6 proteins, thereby enabling translocation of the major pathogenicity factor CagA into host cells. The HopQ–CEACAM interaction is characterized by a remarkably high affinity (KD from 23 to 268 nM), which is independent of CEACAM glycosylation, identifying CEACAMs as bona fide protein receptors for Hp. Our data suggest that the HopQ–CEACAM interaction contributes to gastric colonization or Hp-induced pathologies, although the precise role and functional consequences of this interaction in vivo remain to be determined.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Hp interacts with soluble CEACAM1 and CEACAM5 molecules with different specificities.
Figure 2: The Hp outer membrane protein HopQ is the adhesin interacting with soluble CEACAM1 and CEACAM5.
Figure 3: The HopQ–CEACAM interaction is essential for Hp CagA translocation.
Figure 4: CEACAM1, CEACAM3, CEACAM5 and CEACAM6 act as cellular receptors for Hp, and the N-terminal IgV domain of CEACAM5 is sufficient to mediate CagA translocation.
Figure 5: Hp co-localizes with CEACAM5 in the gastric tissue of Hp-infected patients.
Figure 6: CEACAM5 expression levels determined on human gastric biopsy sections.


  1. 1

    Suerbaum, S. & Michetti, P. Helicobacter pylori infection. N. Engl. J. Med. 347, 1175–1186 (2002).

    CAS  Article  Google Scholar 

  2. 2

    Peek, R. M. & Blaser, M. J. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat. Rev. Cancer 2, 28–37 (2002).

    CAS  Article  Google Scholar 

  3. 3

    Kwok, T. et al. Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 449, 862–866 (2007).

    CAS  Article  Google Scholar 

  4. 4

    Jimenez-Soto, L. F. et al. Helicobacter pylori type IV secretion apparatus exploits beta1 integrin in a novel RGD-independent manner. PLoS Pathog. 5, e1000684 (2009).

    Article  Google Scholar 

  5. 5

    Odenbreit, S. et al. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287, 1497–1500 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Fischer, W. et al. Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol. Microbiol. 42, 1337–1348 (2001).

    CAS  Article  Google Scholar 

  7. 7

    Gorrell, R. J. et al. A novel NOD1- and CagA-independent pathway of interleukin-8 induction mediated by the Helicobacter pylori type IV secretion system. Cell. Microbiol. 15, 554–570 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Selbach, M. et al. Host cell interactome of tyrosine-phosphorylated bacterial proteins. Cell Host. Microbe 5, 397–403 (2009).

    CAS  Article  Google Scholar 

  9. 9

    Higashi, H. et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295, 683–686 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Tsutsumi, R., Higashi, H., Higuchi, M., Okada, M. & Hatakeyama, M. Attenuation of Helicobacter pylori CagA-SHP-2 signaling by interaction between CagA and C-terminal Src kinase. J. Biol. Chem. 278, 3664–3670 (2002).

    Article  Google Scholar 

  11. 11

    Amieva, M. R. et al. Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 300, 1430–1434 (2003).

    CAS  Article  Google Scholar 

  12. 12

    Saadat, I. et al. Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature 447, 330–333 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Ohnishi, N. et al. Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc. Natl Acad. Sci. USA 105, 1003–1008 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Rieder, G., Merchant, J. L. & Haas, R. Helicobacter pylori cag-type IV secretion system facilitates corpus colonization to induce precancerous conditions in Mongolian gerbils. Gastroenterology 128, 1229–1242 (2005).

    CAS  Article  Google Scholar 

  15. 15

    Franco, A. T. et al. Regulation of gastric carcinogenesis by Helicobacter pylori virulence factors. Cancer Res. 68, 379–387 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Hatakeyama, M. Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat. Rev. Cancer 4, 688–694 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Ishijima, N. et al. BabA-mediated adherence is a potentiator of the Helicobacter pylori Type IV secretion system activity. J. Biol. Chem. 286, 25256–25264 (2011).

    CAS  Article  Google Scholar 

  18. 18

    Belogolova, E. et al. Helicobacter pylori outer membrane protein HopQ identified as a novel T4SS-associated virulence factor. Cell. Microbiol. 15, 1896–1912 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Jimenez-Soto, L. F., Clausen, S., Sprenger, A., Ertl, C. & Haas, R. Dynamics of the Cag-type IV secretion system of Helicobacter pylori as studied by bacterial co-infections. Cell Microbiol. 15, 1924–1937 (2013).

    CAS  PubMed  Google Scholar 

  20. 20

    Kuespert, K., Pils, S. & Hauck, C. R. CEACAMs: their role in physiology and pathophysiology. Curr. Opin. Cell Biol. 18, 565–571 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Gray-Owen, S. D. & Blumberg, R. S. CEACAM1: contact-dependent control of immunity. Nat. Rev. Immunol. 6, 433–446 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Buntru, A., Roth, A., Nyffenegger-Jann, N. J. & Hauck, C. R. HemITAM signaling by CEACAM3, a human granulocyte receptor recognizing bacterial pathogens. Arch. Biochem. Biophys. 524, 77–83 (2012).

    CAS  Article  Google Scholar 

  23. 23

    Hauck, C. R., Agerer, F., Muenzner, P. & Schmitter, T. Cellular adhesion molecules as targets for bacterial infection. Eur. J. Cell Biol. 85, 235–242 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Kuespert, K., Weibel, S. & Hauck, C. R. Profiling of bacterial adhesin—host receptor recognition by soluble immunoglobulin superfamily domains. J. Microbiol. Methods 68, 478–485 (2007).

    CAS  Article  Google Scholar 

  25. 25

    Heuermann, D. & Haas, R. A stable shuttle vector system for efficient genetic complementation of Helicobacter pylori strains by transformation and conjugation. Mol. Gen. Genet. 257, 519–528 (1998).

    CAS  Article  Google Scholar 

  26. 26

    Cao, P. & Cover, T. L. Two different families of hopQ alleles in Helicobacter pylori. J. Clin. Microbiol. 40, 4504–4511 (2002).

    CAS  Article  Google Scholar 

  27. 27

    Korotkova, N. et al. Binding of Dr adhesins of Escherichia coli to carcinoembryonic antigen triggers receptor dissociation. Mol. Microbiol. 67, 420–434 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Garhart, C. A., Redline, R. W., Nedrud, J. G. & Czinn, S. J. Clearance of Helicobacter pylori infection and resolution of postimmunization gastritis in a kinetic study of prophylactically immunized mice. Infect. Immun. 70, 3529–3538 (2002).

    CAS  Article  Google Scholar 

  29. 29

    Kammerer, R. & Zimmermann, W. Coevolution of activating and inhibitory receptors within mammalian carcinoembryonic antigen families. BMC Biol. 8, 12 (2010).

    Article  Google Scholar 

  30. 30

    Muenzner, P., Bachmann, V., Zimmermann, W., Hentschel, J. & Hauck, C. R. Human-restricted bacterial pathogens block shedding of epithelial cells by stimulating integrin activation. Science 329, 1197–1201 (2010).

    CAS  Article  Google Scholar 

  31. 31

    Barrozo, R. M. et al. Functional plasticity in the type IV secretion system of Helicobacter pylori. PLoS Pathog. 9, e1003189 (2013).

    Article  Google Scholar 

  32. 32

    Linz, B. et al. An African origin for the intimate association between humans and Helicobacter pylori. Nature 445, 915–918 (2007).

    Article  Google Scholar 

  33. 33

    Schmitter, T., Agerer, F., Peterson, L., Munzner, P. & Hauck, C. R. Granulocyte CEACAM3 is a phagocytic receptor of the innate immune system that mediates recognition and elimination of human-specific pathogens. J. Exp. Med. 199, 35–46 (2004).

    CAS  Article  Google Scholar 

  34. 34

    Dailidiene, D., Dailide, G., Kersulyte, D., & Berg, D. E. Contraselectable streptomycin susceptibility determinant for genetic manipulation and analysis of Helicobacter pylori. Appl. Environ. Microbiol. 72, 5908–5914 (2006).

    CAS  Article  Google Scholar 

  35. 35

    Pham, K. T. et al. Cagi is an essential component of the Helicobacter pylori Cag type IV secretion system and forms a complex with CagL. PLoS ONE 7, e35341 (2012).

    CAS  Article  Google Scholar 

  36. 36

    Voges, M., Bachmann, V., Kammerer, R., Gophna, U. & Hauck, C. R. CEACAM1 recognition by bacterial pathogens is species-specific. BMC Microbiol. 10, 117 (2010).

    Article  Google Scholar 

  37. 37

    Pelegrin, A. et al. Human carcinoembryonic antigen cDNA expressed in rat carcinoma cells can function as target antigen for tumor localization of antibodies in nude rats and as rejection antigen in syngeneic rats. Int. J. Cancer 52, 110–119 (1992).

    CAS  Article  Google Scholar 

  38. 38

    Fischer, W. & Haas, R. The RecA protein of Helicobacter pylori requires a posttranslational modification for full activity. J. Bacteriol. 186, 777–784 (2004).

    CAS  Article  Google Scholar 

  39. 39

    Hohlfeld, S. et al. A C-terminal translocation signal is necessary, but not sufficient for type IV secretion of the Helicobacter pylori CagA protein. Mol. Microbiol. 59, 1624–1637 (2006).

    CAS  Article  Google Scholar 

  40. 40

    Odenbreit, S., Faller, G. & Haas, R. Role of the alpAB proteins and lipopolysaccharide in adhesion of Helicobacter pylori to human gastric tissue. Int. J. Med. Microbiol. 292, 247–256 (2002).

    CAS  Article  Google Scholar 

Download references


The authors acknowledge support from collaborating gastroenterologists who collected gastric biopsies in the framework of the Africa Infectiology Study in Nigeria, especially at Lagos University Teaching Hospital, the University College Hospital (UCH) Ibadan and the University Teaching Hospital Complex Ile-Ife. The authors thank V. Naegele for CEACAM1 and CEACAM5 transfected HEK293 cells, E. Vetter for staining of CEA immunohistology sections, M. Schiemann and L. Henkel for FACS sorting of transfected cells and E. Weiss for technical support. This work was supported by grants from DFG (HA2856/6-2 to C.R.H. and HA2697/16-1, 17-1 and 18-1 and SFB914 Project B05 to R.H.) and in part by an Alexander von Humboldt Foundation Experienced Research Fellowship (to E.J.S.).

Author information




V.K. carried out Hp mutant generation, pulldown assays and knockdowns. L.H. performed mutant CEACAM construction and Hp binding assays. E.L. carried out microscopy studies with patient material and B.B. carried out microscopy studies with Hp-infected cell lines. D.A.B. investigated the expression of HopQ and CEA-N in E. coli and carried out ITC experiments. U.H. performed in vivo studies and histological experiments. A.R. generated the soluble CEACAM construct. A.K.-T. prepared and purified soluble CEACAM constructs. S.I.S. coordinated biopsies in Lagos. S.M. generated pathology data. E.J.S. analysed the ITC experimental results. W.Z. carried out CEACAM plasmid construction. Q.Z. conducted CEACAM5 luciferase reporter assays. W.F. carried out Hp omp gene analysis and Hp mutant construction. C.R.H. provided CEACAM reagents and CEA-transgenic mice. R.H. designed and coordinated the project and wrote the paper.

Corresponding author

Correspondence to Rainer Haas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1-10, Supplementary Table 1-4, Original gel images (PDF 4790 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Königer, V., Holsten, L., Harrison, U. et al. Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA. Nat Microbiol 2, 16188 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing