Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria

Abstract

The type VII protein secretion system (T7SS) plays a critical role in the virulence of human pathogens including Mycobacterium tuberculosis and Staphylococcus aureus. Here, we report that the S. aureus T7SS secretes a large nuclease toxin, EsaD. The toxic activity of EsaD is neutralized during its biosynthesis through complex formation with an antitoxin, EsaG, which binds to its C-terminal nuclease domain. The secretion of EsaD is dependent on a further accessory protein, EsaE, that does not interact with the nuclease domain, but instead binds to the EsaD N-terminal region. EsaE has a dual cytoplasmic/membrane localization, and membrane-bound EsaE interacts with the T7SS secretion ATPase, EssC, implicating EsaE in targeting the EsaDG complex to the secretion apparatus. EsaD and EsaE are co-secreted, whereas EsaG is found only in the cytoplasm and may be stripped off during the secretion process. Strain variants of S. aureus that lack esaD encode at least two copies of EsaG-like proteins, most probably to protect themselves from the toxic activity of EsaD secreted by esaD+ strains. In support of this, a strain overproducing EsaD elicits significant growth inhibition against a sensitive strain. We conclude that the T7SS may play unexpected and key roles in bacterial competitiveness.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EsaD is a substrate of the T7SS.
Figure 2: EsaD/G form a nuclease toxin–antitoxin pair.
Figure 3: EsaE is co-secreted with EsaD and together with EsaG they form a ternary complex.
Figure 4: EsaE is a membrane-associated protein that interacts with multimeric EssC.
Figure 5: Secreted EsaD kills sensitive strains of S. aureus.

Similar content being viewed by others

References

  1. Costa, T. R. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13, 343–359 (2015).

    Article  CAS  Google Scholar 

  2. Pym, A. S. et al. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat. Med. 9, 533–539 (2003).

    Article  CAS  Google Scholar 

  3. Hsu, T. et al. The primary mechanism of attenuation of bacillus Calmette–Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc. Natl Acad. Sci. USA 100, 12420–12425 (2003).

    Article  CAS  Google Scholar 

  4. Stanley, S. A., Raghavan, S., Hwang, W. W. & Cox, J. S. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc. Natl Acad. Sci. USA 100, 13001–13006 (2003).

    Article  CAS  Google Scholar 

  5. Abdallah, A. M. et al. A specific secretion system mediates PPE41 transport in pathogenic mycobacteria. Mol. Microbiol. 62, 667–679 (2006).

    Article  CAS  Google Scholar 

  6. Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    Article  CAS  Google Scholar 

  7. Abdallah, A. M. et al. Type VII secretion—mycobacteria show the way. Nat. Rev. Microbiol. 5, 883–891 (2007).

    Article  CAS  Google Scholar 

  8. Baptista, C., Barreto, H. C. & Sao-Jose, C. High levels of DegU-P activate an Esat-6-like secretion system in Bacillus subtilis. PLoS ONE 8, e67840 (2013).

    Article  CAS  Google Scholar 

  9. Huppert, L. A. et al. The ESX system in Bacillus subtilis mediates protein secretion. PLoS ONE 9, e96267 (2014).

    Article  Google Scholar 

  10. Burts, M. L., Williams, W. A., DeBord, K. & Missiakas, D. M. EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc. Natl Acad Sci. USA 102, 1169–1174 (2005).

    Article  CAS  Google Scholar 

  11. Pallen, M. J. The ESAT-6/WXG100 superfamily—and a new Gram-positive secretion system? Trends Microbiol. 10, 209–212 (2002).

    Article  CAS  Google Scholar 

  12. Rosenberg, O. S. et al. Substrates control multimerization and activation of the multi-domain ATPase motor of type VII secretion. Cell 161, 501–512 (2015).

    Article  CAS  Google Scholar 

  13. Renshaw, P. S. et al. Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6. EMBO J. 24, 2491–2498 (2005).

    Article  CAS  Google Scholar 

  14. Sundaramoorthy, R., Fyfe, P. K. & Hunter, W. N. Structure of Staphylococcus aureus EsxA suggests a contribution to virulence by action as a transport chaperone and/or adaptor protein. J. Mol. Biol. 383, 603–614 (2008).

    Article  CAS  Google Scholar 

  15. Sysoeva, T. A., Zepeda-Rivera, M. A., Huppert, L. A. & Burton, B. M. Dimer recognition and secretion by the ESX secretion system in Bacillus subtilis. Proc. Natl Acad Sci. USA 111, 7653–7658 (2014).

    Article  CAS  Google Scholar 

  16. Kneuper, H. et al. Heterogeneity in ess transcriptional organization and variable contribution of the Ess/Type VII protein secretion system to virulence across closely related Staphylocccus aureus strains. Mol. Microbiol. 93, 928–943 (2014).

    Article  CAS  Google Scholar 

  17. Jäger, F., Zoltner, M., Kneuper, H., Hunter, W. N. & Palmer, T. Membrane interactions and self-association of components of the Ess/Type VII secretion system of Staphylococcus aureus. FEBS Lett. 590, 349–357 (2016).

    Article  Google Scholar 

  18. Warne, B. et al. The Ess/Type VII secretion system of Staphylococcus aureus shows unexpected genetic diversity. BMC Genomics 17, 222 (2016).

    Article  Google Scholar 

  19. Burts, M. L., DeDent, A. C. & Missiakas, D. M. EsaC substrate for the ESAT-6 secretion pathway and its role in persistent infections of Staphylococcus aureus. Mol. Microbiol. 69, 736–746 (2008).

    Article  CAS  Google Scholar 

  20. Anderson, M., Aly, K. A., Chen, Y. H. & Missiakas, D. Secretion of atypical protein substrates by the ESAT-6 secretion system of Staphylococcus aureus. Mol. Microbiol. 90, 734–743 (2013).

    Article  CAS  Google Scholar 

  21. Wang, Y. et al. Role of the ESAT-6 secretion system in virulence of the emerging community-associated Staphylococcus aureus lineage ST398. Sci. Rep. 6, 25163 (2016).

    Article  CAS  Google Scholar 

  22. Korea, C. G. et al. Staphylococcal Esx proteins modulate apoptosis and release of intracellular Staphylococcus aureus during infection in epithelial cells. Infect. Immun. 82, 4144–4153 (2014).

    Article  Google Scholar 

  23. Anderson, M., Chen, Y. H., Butler, E. K. & Missiakas, D. M. EsaD, a secretion factor for the Ess pathway in Staphylococcus aureus. J. Bacteriol. 193, 1583–1589 (2011).

    Article  CAS  Google Scholar 

  24. Tabor, S. & Richardson, C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. Natl Acad Sci. USA 82, 1074–1078 (1985).

    Article  CAS  Google Scholar 

  25. Butala, M., Zgur-Bertok, D. & Busby, S. J. The bacterial LexA transcriptional repressor. Cell Mol. Life Sci. 66, 82–93 (2009).

    Article  CAS  Google Scholar 

  26. Hill, T. M., Sharma, B., Valjavec-Gratian, M. & Smith, J. sfi-independent filamentation in Escherichia coli is lexA dependent and requires DNA damage for induction. J. Bacteriol. 179, 1931–1939 (1997).

    Article  CAS  Google Scholar 

  27. Gavrieli, Y., Sherman, Y. & Ben-Sasson, S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501 (1992).

    Article  CAS  Google Scholar 

  28. Bos, J., Yakhnina, A. A. & Gitai, Z. BapE DNA endonuclease induces an apoptotic-like response to DNA damage in Caulobacter. Proc. Natl Acad Sci. USA 109, 18096–18101 (2012).

    Article  CAS  Google Scholar 

  29. Blower, T. R., Salmond, G. P. & Luisi, B. F. Balancing at survival's edge: the structure and adaptive benefits of prokaryotic toxin–antitoxin partners. Curr. Opin. Struct. Biol. 21, 109–118 (2011).

    Article  CAS  Google Scholar 

  30. Daleke, M. H. et al. Specific chaperones for the type VII protein secretion pathway. J. Biol. Chem. 287, 31939–31947 (2012).

    Article  CAS  Google Scholar 

  31. Ekiert, D. C. & Cox, J. S. Structure of a PE–PPE–EspG complex from Mycobacterium tuberculosis reveals molecular specificity of ESX protein secretion. Proc. Natl Acad Sci. USA 111, 14758–14763 (2014).

    Article  CAS  Google Scholar 

  32. Korotkova, N. et al. Structure of the Mycobacterium tuberculosis type VII secretion system chaperone EspG5 in complex with PE25–PPE41 dimer. Mol. Microbiol. 94, 367–382 (2014).

    Article  CAS  Google Scholar 

  33. Zoltner, M. et al. EssC: domain structures inform on the elusive translocation channel in the Type VII secretion system. Biochem. J. 473, 1941–1952 (2016).

    Article  CAS  Google Scholar 

  34. Russell, A. B. et al. Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475, 343–347 (2011).

    Article  CAS  Google Scholar 

  35. Murdoch, S. L. et al. The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J. Bacteriol. 193, 6057–6069 (2011).

    Article  CAS  Google Scholar 

  36. Souza, D. P. et al. Bacterial killing via a type IV secretion system. Nat. Commun. 6, 6453 (2015).

    Article  CAS  Google Scholar 

  37. Hood, R. D. et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7, 25–37 (2010).

    Article  CAS  Google Scholar 

  38. Aoki, S. K. et al. Contact-dependent inhibition of growth in Escherichia coli. Science 309, 1245–1248 (2005).

    Article  CAS  Google Scholar 

  39. Zhang, D., de Souza, R. F., Anantharaman, V., Iyer, L. M. & Aravind, L. Polymorphic toxin systems: comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol. Direct 7, 18 (2012).

    Article  CAS  Google Scholar 

  40. Jamet, A. & Nassif, X. New players in the toxin field: polymorphic toxin systems in bacteria. MBio 6, e0028 5 (2015).

    Article  Google Scholar 

  41. Ma, A. T., McAuley, S., Pukatzki, S. & Mekalanos, J. J. Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe 5, 234–243 (2009).

    Article  CAS  Google Scholar 

  42. Akpe San Roman, S. et al. A heterodimer of EsxA and EsxB is involved in sporulation and is secreted by a type VII secretion system in Streptomyces coelicolor. Microbiology 156, 1719–1729 (2010).

    Article  Google Scholar 

  43. Holberger, L. E., Garza-Sanchez, F., Lamoureux, J., Low, D. A. & Hayes, C. S. A novel family of toxin/antitoxin proteins in Bacillus species. FEBS Lett. 586, 132–136 (2012).

    Article  CAS  Google Scholar 

  44. Housden, N. G. & Kleanthous, C. Colicin translocation across the Escherichia coli outer membrane. Biochem. Soc. Trans. 40, 1475–1479 (2012).

    Article  CAS  Google Scholar 

  45. Willett, J. L., Gucinski, G. C., Fatherree, J. P., Low, D. A. & Hayes, C. S. Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways. Proc. Natl Acad. Sci. USA 112, 11341–11346 (2015).

    Article  CAS  Google Scholar 

  46. Monk, I. R., Shah, I. M., Xu, M., Tan, M. W. & Foster, T. J. Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. MBio 3, e00277 (2012).

    Article  CAS  Google Scholar 

  47. Helle, L. et al. Vectors for improved Tet repressor-dependent gradual gene induction or silencing in Staphylococcus aureus. Microbiology 157, 3314–3323 (2011).

    Article  CAS  Google Scholar 

  48. Karimova, G., Pidoux, J., Ullmann, A. & Ladant, D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl Acad Sci. USA 95, 5752–5756 (1998).

    Article  CAS  Google Scholar 

  49. Sambrook, J. & Russell, D. W. Molecular Cloning: A Laboratory Manual 3rd edn (Cold Spring Harbor Laboratory Press, 2001).

    Google Scholar 

  50. Miller, J. H. A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria (Cold Spring Harbor Laboratory Press, 1992).

    Google Scholar 

  51. Lei, M. G. et al. A single copy integration vector that integrates at an engineered site on the Staphylococcus aureus chromosome. BMC Res. Notes 5, 5 (2012).

    Article  CAS  Google Scholar 

  52. Novick, R. P. Genetic systems in staphylococci. Methods Enzymol. 204, 587–636 (1991).

    Article  CAS  Google Scholar 

  53. Keller, R., de Keyzer, J., Driessen, A. J. M. & Palmer, T. Co-operation between different targeting pathways during integration of a membrane protein. J. Cell Biol. 199, 303–315 (2012).

    Article  CAS  Google Scholar 

  54. Miller, M. et al. Staphylococcal PknB as the first prokaryotic representative of the proline-directed kinases. PLoS ONE 5, e9057 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the UK Biotechnology and Biological Sciences Research Council (grant no. BB/H007571/1), the Medical Research Council (grants nos. G117/519 and MR/M011224/1), the Wellcome Trust (Early Postdoctoral Training Fellowship for Clinician Scientists WT099084MA to J.D.C., Investigator Award 110183/Z/15/Z to T.P. and Institutional Strategic Support Fund 105606/Z/14/Z to the University of Dundee), Tenovus Scotland (project grant no. T14/10) and a China Scholarship Council PhD studentship (to Z.C.). The authors thank G. Buchanan for constructing some of the bacterial two-hybrid clones used in this study, J. Cargill for advice regarding synthetic construct design and co-purification experiments, M. Costa for assistance with microscopy, E. Murray and P. Williams (University of Nottingham) for supplying phage ɸ11, J.-M. van Dijl (University of Groningen) for the gift of anti-TrxA antiserum, R. Bertram (University of Tübingen) for pRAB11 and F. Sargent and S. Coulthurst for discussion and advice.

Author information

Authors and Affiliations

Authors

Contributions

Z.C., M.G.C., H.K., J.D.C. and T.P. designed the experiments. Z.C., M.G.C. and H.K. carried out experimental work. Z.C., M.G.C., H.K., J.D.C. and T.P. undertook data analysis. T.P. wrote the paper.

Corresponding author

Correspondence to Tracy Palmer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1–16, Supplementary Tables 1–3, Supplementary References (PDF 7570 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Z., Casabona, M., Kneuper, H. et al. The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. Nat Microbiol 2, 16183 (2017). https://doi.org/10.1038/nmicrobiol.2016.183

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing