Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dog and human inflammatory bowel disease rely on overlapping yet distinct dysbiosis networks

Abstract

Inflammatory bowel disease (IBD) is an autoimmune condition that is difficult to diagnose, and animal models of this disease have questionable human relevance1. Here, we show that the dysbiosis network underlying IBD in dogs differs from that in humans, with some bacteria such as Fusobacterium switching roles between the two species (as Bacteroides fragilis switches roles between humans and mice)2. For example, a dysbiosis index trained on humans fails when applied to dogs, but a dog-specific dysbiosis index achieves high correlations with the overall dog microbial community diversity patterns. In addition, a random forest classifier trained on dog-specific samples achieves high discriminatory power, even when using stool samples rather than the mucosal biopsies required for high discriminatory power in humans2. These relationships were not detected in previously published dog IBD data sets due to their limited sample size and statistical power3. Taken together, these results reveal the need to train host-specific dysbiosis networks and point the way towards a generalized understanding of IBD across different mammalian models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diversity overview and comparison with humans.
Figure 2: Human and dog dysbiosis index.

Similar content being viewed by others

References

  1. Jergens, A. E. & Simpson, K. W. Inflammatory bowel disease in veterinary medicine. Front. Biosci. (Elite Ed.) 4, 1404–1419 (2012).

    Article  Google Scholar 

  2. Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 15, 382–392 (2014).

    Article  CAS  Google Scholar 

  3. Honneffer, J. B., Minamoto, Y. & Suchodolski, J. S. Microbiota alterations in acute and chronic gastrointestinal inflammation of cats and dogs. World J. Gastroenterol. 20, 16489–16497 (2014).

    Article  Google Scholar 

  4. Hayward, J. J. et al. Complex disease and phenotype mapping in the domestic dog. Nat. Commun. 7, 10460 (2016).

    Article  CAS  Google Scholar 

  5. Day, M. J. et al. Histopathological standards for the diagnosis of gastrointestinal inflammation in endoscopic biopsy samples from the dog and cat: a report from the World Small Animal Veterinary Association Gastrointestinal Standardization Group. J. Comp. Pathol. 138(Suppl. 1), S1–S43 (2008).

    Article  Google Scholar 

  6. Simpson, K. W. et al. Adherent and invasive Escherichia coli is associated with granulomatous colitis in boxer dogs. Infect. Immun. 74, 4778–4792 (2006).

    Article  CAS  Google Scholar 

  7. Suchodolski, J. S., Dowd, S. E., Wilke, V., Steiner, J. M. & Jergens, A. E. 16S rRNA gene pyrosequencing reveals bacterial dysbiosis in the duodenum of dogs with idiopathic inflammatory bowel disease. PLoS ONE 7, e39333 (2012).

    Article  CAS  Google Scholar 

  8. Suchodolski, J. S. et al. The fecal microbiome in dogs with acute diarrhea and idiopathic inflammatory bowel disease. PLoS ONE 7, e51907 (2012).

    Article  CAS  Google Scholar 

  9. Frank, D. N. et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm. Bowel Dis. 17, 179–184 (2011).

    Article  Google Scholar 

  10. Minamoto, Y. et al. Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease. Gut Microbes 6, 33–47 (2015).

    Article  CAS  Google Scholar 

  11. Breiman, L. Random forests. Machine Learning 45, 5–32 (2001).

    Article  Google Scholar 

  12. Castellarin, M. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 22, 299–306 (2012).

    Article  CAS  Google Scholar 

  13. Suchodolski, J. S., Camacho, J. & Steiner, J. M. Analysis of bacterial diversity in the canine duodenum, jejunum, ileum, and colon by comparative 16S rRNA gene analysis. FEMS Microbiol. Ecol. 66, 567–578 (2008).

    Article  CAS  Google Scholar 

  14. Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).

    Article  CAS  Google Scholar 

  15. Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).

    Article  CAS  Google Scholar 

  16. Song, S. J. et al. Cohabiting family members share microbiota with one another and with their dogs. eLife 2, e00458 (2013).

    Article  Google Scholar 

  17. Hedges, S. B., Marin, J., Suleski, M., Paymer, M. & Kumar, S. Tree of life reveals clock-like speciation and diversification. Mol. Biol. Evol. 32, 835–845 (2015).

    Article  CAS  Google Scholar 

  18. Price, S. A., Hopkins, S. S., Smith, K. K. & Roth, V. L. Tempo of trophic evolution and its impact on mammalian diversification. Proc. Natl Acad. Sci. USA 109, 7008–7012 (2012).

    Article  CAS  Google Scholar 

  19. Wesley-Hunt, G. D. & Flynn, J. J. Phylogeny of the Carnivora: basal relationships among the carnivoramorphans, and assessment of the position of ‘Miacoidea’ relative to Carnivora. J. System. Palaeontol. 3, 1–28 (2005).

    Article  Google Scholar 

  20. Langille, M. G. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).

    Article  CAS  Google Scholar 

  21. Mardini, H. E. & Grigorian, A. Y. Probiotic mix VSL#3 is effective adjunctive therapy for mild to moderately active ulcerative colitis: a meta-analysis. Inflamm. Bowel Dis. 20, 1562–1567 (2014).

    Article  Google Scholar 

  22. Rossi, G. et al. Comparison of microbiological, histological, and immunomodulatory parameters in response to treatment with either combination therapy with prednisone and metronidazole or probiotic VSL#3 strains in dogs with idiopathic inflammatory bowel disease. PLoS ONE 9, e94699 (2014).

    Article  Google Scholar 

  23. Uronis, J. M. et al. Gut microbial diversity is reduced by the probiotic VSL#3 and correlates with decreased TNBS-induced colitis. Inflamm. Bowel Dis. 17, 289–297 (2011).

    Article  Google Scholar 

  24. Mawby, D. I. et al. Comparison of various methods for estimating body fat in dogs. J. Am. Anim. Hosp. Assoc. 40, 109–114 (2004).

    Article  Google Scholar 

  25. EMP protocols and standards Earth Microbiome Project (2015); http://www.earthmicrobiome.org/emp-standard-protocols/

  26. McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).

    Article  CAS  Google Scholar 

  27. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    Article  CAS  Google Scholar 

  28. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    Article  CAS  Google Scholar 

  29. Weiss, S. J. et al. Effects of library size variance, sparsity, and compositionality on the analysis of microbiome data. PeerJ. PrePrints 3, e1408 (2015).

    Google Scholar 

  30. Perez, F. & Granger, B. E. IPython: a system for interactive scientific computing. Comput. Sci. Eng. 9, 21–29 (2007).

    Article  CAS  Google Scholar 

  31. Lozupone, C. & Knight, R. Unifrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).

    Article  CAS  Google Scholar 

  32. Kuhn, M. Building predictive models in R using the caret package. J. Stat. Soft. 28, 1–26 (2008).

    Article  Google Scholar 

  33. van der Walt, S., Colbert, S. C. & Varoquaux, G. The numPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30 (2011).

    Article  Google Scholar 

  34. Seaborn: Statistical Data Visualization (Waskom, M., 2012); https://stanford.edu/~mwaskom/software/seaborn/

  35. Vazquez-Baeza, Y., Pirrung, M., Gonzalez, A. & Knight, R. EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience 2, 16 (2013).

    Article  Google Scholar 

  36. Detecting statistically significant associtations between sparse and high dimensional compositional data (Schwager, E. E. A. et al., 2016); http://huttenhower.sph.harvard.edu/ccrepe

  37. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  Google Scholar 

  38. Stone, L. & Roberts, A. The checkerboard score and species distributions. Oecologia 85, 74–79 (1990).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support provided by the Crohn's and Colitis Foundation of American, the Templeton Foundation and the Keck Foundation (via the Earth Microbiome Project), the National institutes of Health. The authors thank Z. Xu, J. Sanders, A. Amir, G. Ackermann, J. Morton, L. Ursell, J. Metcalf, A. Gonzalez and E. Schwager for their comments and feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Y.V.-B. wrote the manuscript and managed, interpreted and analysed the data. E.R.H. contributed to the manuscript and analysed the data. J.S.S. contributed to the manuscript and analysed and interpreted the data. R.K. wrote the manuscript and interpreted the data. All authors worked together to finalize and approve this manuscript.

Corresponding author

Correspondence to Rob Knight.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Tables 1–3, Supplementary Figures 1–5. (PDF 2637 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vázquez-Baeza, Y., Hyde, E., Suchodolski, J. et al. Dog and human inflammatory bowel disease rely on overlapping yet distinct dysbiosis networks. Nat Microbiol 1, 16177 (2016). https://doi.org/10.1038/nmicrobiol.2016.177

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.177

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing