Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of human Aichi virus and implications for receptor binding

Abstract

Aichi virus (AiV), an unusual and poorly characterized picornavirus, classified in the genus Kobuvirus, can cause severe gastroenteritis and deaths in children below the age of five years, especially in developing countries1,2. The seroprevalence of AiV is approximately 60% in children under the age of ten years and reaches 90% later in life3,4. There is no available vaccine or effective antiviral treatment. Here, we describe the structure of AiV at 3.7 Å. This first high-resolution structure for a kobuvirus is intermediate between those of the enteroviruses and cardioviruses, with a shallow, narrow depression bounded by the prominent VP0 CD loops (linking the C and D strands of the β-barrel), replacing the depression known as the canyon, frequently the site of receptor attachment in enteroviruses. VP0 is not cleaved to form VP2 and VP4, so the ‘VP2’ β-barrel structure is complemented with a unique extended structure on the inside of the capsid. On the outer surface, a polyproline helix structure, not seen previously in picornaviruses is present at the C terminus of VP1, a position where integrin binding motifs are found in some other picornaviruses. A peptide corresponding to this polyproline motif somewhat attenuates virus infectivity, presumably blocking host-cell attachment. This may guide cellular receptor identification.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 3.68 Å resolution (overall) cryo-EM structure of AiV.
Figure 2: Overall structures, phylogeny and structural features.
Figure 3: Particle stability and the correlation between particle stability and interaction areas.
Figure 4: A proline-rich motif, a potential receptor binding site in AiV.

Similar content being viewed by others

References

  1. Richman, D. D., Whitley, R. J. & Hayden, F. G. Clinical Virology (American Society for Microbiology Press, 2009).

    Google Scholar 

  2. Reuter, G., Boros, A. & Pankovics, P. Kobuviruses—a comprehensive review. Rev. Med. Virol. 21, 32–41 (2011).

    Article  PubMed  Google Scholar 

  3. Sdiri-Loulizi, K. et al. Aichi virus IgG seroprevalence in Tunisia parallels genomic detection and clinical presentation in children with gastroenteritis. Clin. Vaccine Immunol. 17, 1111–1116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ribes, J. M., Montava, R., Téllez-Castillo, C. J., Fernández-Jiménez, M. & Buesa, J. Seroprevalence of Aichi virus in a Spanish population from 2007 to 2008. Clin. Vaccine Immunol. 17, 545–549 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sasaki, J., Nagashima, S. & Taniguchi, K. Aichi virus leader protein is involved in viral RNA replication and encapsidation. J. Virol. 77, 10799–10807 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lukashev, A. N. et al. Genetic variation and recombination in Aichi virus. J. Gen. Virol. 93, 1226–1235 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Sun, Y. et al. An open conformation determined by a structural switch for 2A protease from coxsackievirus A16. Prot. Cell 4, 782–792 (2013).

    Article  CAS  Google Scholar 

  8. Sasaki, J. & Taniguchi, K. Aichi virus 2A protein is involved in viral RNA replication. J. Virol. 82, 9765–9769 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sasaki, J. & Taniguchi, K. The 5′-end sequence of the genome of Aichi virus, a picornavirus, contains an element critical for viral RNA encapsidation. J. Virol. 77, 3542–3548 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix. refine. Acta Crystallogr. D 68, 352–367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Acharya, R. et al. The three-dimensional structure of foot-and-mouth disease virus at 2.9 Å resolution. Nature 337, 709–716 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Dang, M. et al. Molecular mechanism of SCARB2-mediated attachment and uncoating of EV71. Prot. Cell 5, 692–703 (2014).

    Article  CAS  Google Scholar 

  13. Tuthill, T. J., Groppelli, E., Hogle, J. M. & Rowlands, D. J. in Cell Entry by Non-Enveloped Viruses 43–89 (Springer, 2010).

    Book  Google Scholar 

  14. Wang, X. et al. A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nat. Struct. Mol. Biol. 19, 424–429 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ren, J. et al. Picornavirus uncoating intermediate captured in atomic detail. Nat. Commun. 4, 1929 (2013).

    Article  PubMed  Google Scholar 

  16. Zhu, L. et al. Structure of Ljungan virus provides insight into genome packaging of this picornavirus. Nat. Commun. 6, 8316 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, X. et al. Hepatitis A virus and the origins of picornaviruses. Nature 517, 85–88 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kotecha, A. et al. Structure-based energetics of protein interfaces guides foot-and-mouth disease virus vaccine design. Nat. Struct. Mol. Biol. 22, 788–794 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. De Colibus, L. et al. More-powerful virus inhibitors from structure-based analysis of HEV71 capsid-binding molecules. Nat. Struct. Mol. Biol. 21, 282–288 (2014).

    CAS  Google Scholar 

  21. Ren, J. et al. Structures of coxsackievirus A16 capsids with native antigenicity: implications for particle expansion, receptor binding, and immunogenicity. J. Virol. 89, 10500–10511 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jackson, T., Sheppard, D., Denyer, M., Blakemore, W. & King, A. M. The epithelial integrin αvβ6 is a receptor for foot-and-mouth disease virus. J. Virol. 74, 4949–4956 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mendelsohn, C. L., Wimmer, E. & Racaniello, V. R. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56, 855–865 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Yuan, S. et al. TIM-1 acts a dual-attachment receptor for Ebolavirus by interacting directly with viral GP and the PS on the viral envelope. Prot. Cell 6, 814–824 (2015).

    Article  CAS  Google Scholar 

  25. Baranowski, E. et al. Cell recognition by foot-and-mouth disease virus that lacks the RGD integrin-binding motif: flexibility in aphthovirus receptor usage. J. Virol. 74, 1641–1647 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Williams, Ç. H. et al. Integrin αvβ6 is an RGD-dependent receptor for coxsackievirus A9. J. Virol. 78, 6967–6973 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adzhubei, A. A., Sternberg, M. J. & Makarov, A. A. Polyproline-II helix in proteins: structure and function. J. Mol. Biol. 425, 2100–2132 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Berisio, R. & Vitagliano, L. Polyproline and triple helix motifs in host-pathogen recognition. Curr. Prot. Pept. Sci. 13, 855–865 (2012).

    Article  CAS  Google Scholar 

  29. Vermeire, J., Vanbillemont, G., Witkowski, W. & Verhasselt, B. The Nef-infectivity enigma: mechanisms of enhanced lentiviral infection. Curr. HIV Res. 9, 474–489 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kivioja, T., Ravantti, J., Verkhovsky, A., Ukkonen, E. & Bamford, D. Local average intensity-based method for identifying spherical particles in electron micrographs. J. Struct. Biol. 131, 126–134 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Ludtke, S. J., Baldwin, P. R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2015).

    Article  PubMed  Google Scholar 

  34. Scheres, S. H. RELION implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Scheres, S. H. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Henderson, R. et al. Outcome of the first electron microscopy validation task force meeting. Structure 20, 205–214 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Emsley, P. & Cowtan, K. COOT: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  38. Brown, A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. D 71, 136–153 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Riffel, N. et al. Atomic resolution structure of Moloney murine leukemia virus matrix protein and its relationship to other retroviral matrix proteins. Structure 10, 1627–1636 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Walter, T. S. et al. A plate-based high-throughput assay for virus stability and vaccine formulation. J. Virol. Methods 185, 166–170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Monis, P. T., Giglio, S. & Saint, C. P. Comparison of SYTO9 and SYBR Green I for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis. Anal. Biochem. 340, 24–34 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Jun Dong and J. Diprose for IT support, the OPIC electron microscopy facility for microscope provision and Kai Zhang for data processing. Work was supported by the Ministry of Science and Technology 973 Project (grant no. 2014CB542800), the National Science Foundation (grant nos. 31570717 and 81520108019), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDB08020200) and the MRC (grant nos. G100099 and MR/N00065X/1). The work of the Wellcome Trust Centre in Oxford is supported by Wellcome Trust core award 090532/Z/07/Z. The OPIC electron microscopy facility was founded by a Wellcome Trust JIF award (060208/Z/00/Z) and is supported by a Wellcome Trust equipment grant (093305/Z/10/Z). The Wellcome Trust, MRC and BBSRC also support the National EM facility, which enabled provision of the K2 detector. The Pirbright Institute receives strategic funding from the BBSRC. J.R. is Wellcome Trust-supported, E.E.F. and D.I.S. are supported by the MRC (grant no. G100099), and D.I.S. is supported as a Jenner Investigator.

Author information

Authors and Affiliations

Authors

Contributions

L.Z., X.W., T.S.W. and T.Y. prepared samples, L.Z., X.W., S.Y., A.K., J.R., T.J.T. and T.S.W. assisted in research. X.W., E.E.F., T.J.T. and D.I.S. designed the study. All authors analysed data. X.W., L.Z., J.R., E.E.F., Z.R. and D.I.S. wrote the manuscript.

Corresponding authors

Correspondence to Zihe Rao or David I. Stuart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–6, Supplementary Tables 1–3, Supplementary References (PDF 13044 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Wang, X., Ren, J. et al. Structure of human Aichi virus and implications for receptor binding. Nat Microbiol 1, 16150 (2016). https://doi.org/10.1038/nmicrobiol.2016.150

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.150

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing