Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Co-delivery of cell-wall-forming enzymes in the same vesicle for coordinated fungal cell wall formation

Abstract

Fungal cells are surrounded by an extracellular cell wall. This complex matrix of proteins and polysaccharides protects against adverse stresses and determines the shape of fungal cells. The polysaccharides of the fungal wall include 1,3-β-glucan and chitin, which are synthesized by membrane-bound synthases at the growing cell tip. A hallmark of filamentous fungi is the class V chitin synthase, which carries a myosin-motor domain. In the corn smut fungus Ustilago maydis, the myosin-chitin synthase Mcs1 moves to the plasma membrane in secretory vesicles, being delivered by kinesin-1 and myosin-5. The myosin domain of Mcs1 enhances polar secretion by tethering vesicles at the site of exocytosis. It remains elusive, however, how other cell-wall-forming enzymes are delivered and how their activity is coordinated post secretion. Here, we show that the U. maydis class VII chitin synthase and 1,3-β-glucan synthase travel in Mcs1-containing vesicles, and that their apical secretion depends on Mcs1. Once in the plasma membrane, anchorage requires enzyme activity, which suggests co-synthesis of chitin and 1,3-β-glucan polysaccharides at sites of exocytosis. Thus, delivery of cell-wall-forming enzymes in Mcs1 vesicles ensures local foci of fungal cell wall formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain organization of fungal class V and class VII CHSs.
Figure 2: Class V CHS and class VII CHS co-migrate and are co-secreted.
Figure 3: Null mutants of mcs1 and chs6 exhibit different cell wall phenotypes.
Figure 4: Mcs1, Chs6 and Gsc1 locate in the same vesicle.
Figure 5: Mcs1, Chs6 and Gsc1 remain co-located in stationary wall-forming foci.
Figure 6: Cell wall synthases co-travel in the same vesicle in hyphae.

Similar content being viewed by others

References

  1. James, T. Y. et al. Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443, 818–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Berbee, M. L. & Taylor, J. W. Dating the molecular clock in fungi—how close are we? Fungal Biol. Rev. 24, 1–16 (2010).

    Article  Google Scholar 

  3. Blackwell, M. The fungi: 1, 2, 3 … 5.1 million species? Am. J. Bot. 98, 426–438 (2011).

    Article  PubMed  Google Scholar 

  4. Steinberg, G. Hyphal growth: a tale of motors, lipids, and the Spitzenkorper. Eukaryot. Cell 6, 351–360 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hall, R. A. & Gow, N. A. Mannosylation in Candida albicans: role in cell wall function and immune recognition. Mol. Microbiol. 90, 1147–1161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mentlak, T. A. et al. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell 24, 322–335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Latge, J. P. The cell wall: a carbohydrate armour for the fungal cell. Mol. Microbiol. 66, 279–290 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Latge, J. P. Tasting the fungal cell wall. Cell. Microbiol. 12, 863–872 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Riquelme, M. & Sanchez-Leon, E. The Spitzenkorper: a choreographer of fungal growth and morphogenesis. Curr. Opin. Microbiol. 20, 27–33 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Miyazaki, A. & Ootaki, T. Multiple genes for chitin synthase in the zygomycete fungus Phycomyces blakesleeanus. J. Gen. Appl. Microbiol. 43, 333–340 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Weber, I., Assmann, D., Thines, E. & Steinberg, G. Polar localizing class V myosin chitin synthases are essential during early plant infection in the plant pathogenic fungus Ustilago maydis. Plant Cell 18, 225–242 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kong, L. A. et al. Different chitin synthase genes are required for various developmental and plant infection processes in the rice blast fungus Magnaporthe oryzae. PLoS Pathog. 8, e1002526 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pacheco-Arjona, J. R. & Ramirez-Prado, J. H. Large-scale phylogenetic classification of fungal chitin synthases and identification of a putative cell-wall metabolism gene cluster in Aspergillus genomes. PloS One 9, e104920 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gandia, M., Harries, E. & Marcos, J. F. The myosin motor domain-containing chitin synthase PdChsVII is required for development, cell wall integrity and virulence in the citrus postharvest pathogen Penicillium digitatum. Fungal Genet. Biol. 67, 58–70 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Takeshita, N., Ohta, A. & Horiuchi, H. CsmA, a class V chitin synthase with a myosin motor-like domain, is localized through direct interaction with the actin cytoskeleton in Aspergillus nidulans. Mol. Biol. Cell 16, 01961–01970 (2005).

    Article  CAS  Google Scholar 

  16. Tsuizaki, M., Takeshita, N., Ohta, A. & Horiuchi, H. Myosin motor-like domain of the class VI chitin synthase CsmB is essential to its functions in Aspergillus nidulans. Biosci. Biotechnol. Biochem. 73, 1163–1167 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Schuster, M. et al. Myosin-5, kinesin-1 and myosin-17 cooperate in secretion of fungal chitin synthase. EMBO J. 31, 214–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Martin-Urdiroz, M., Roncero, M. I., Gonzalez-Reyes, J. A. & Ruiz-Roldan, C. ChsVb, a class VII chitin synthase involved in septation, is critical for pathogenicity in Fusarium oxysporum. Eukaryot. Cell 7, 112–121 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Jimenez-Ortigosa, C. et al. Chitin synthases with a myosin motor-like domain control the resistance of Aspergillus fumigatus to echinocandins. Antimicrob. Agents Chemother. 56, 6121–6131 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sanchez-Leon, E. et al. Traffic of chitin synthase 1 (CHS-1) to the Spitzenkörper and developing septa in hyphae of Neurospora crassa: actin dependence and evidence of distinct microvesicle populations. Eukaryot. Cell 10, 683–695 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Garcera-Teruel, A. et al. Loss of virulence in Ustilago maydis by Umchs6 gene disruption. Res. Microbiol. 155, 87–97 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1, 945–951 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ambudkar, S. V., Kim, I. W., Xia, D. & Sauna, Z. E. The A-loop, a novel conserved aromatic acid subdomain upstream of the Walker A motif in ABC transporters, is critical for ATP binding. FEBS Lett. 580, 1049–1055 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Sasaki, N., Asukagawa, H., Yasuda, R., Hiratsuka, T. & Sutoh, K. Deletion of the myopathy loop of Dictyostelium myosin II and its impact on motor functions. J. Biol. Chem. 274, 37840–37844 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Schueler-Furman, O. & Baker, D. Conserved residue clustering and protein structure prediction. Proteins 52, 225–235 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Treitschke, S., Doehlemann, G., Schuster, M. & Steinberg, G. The myosin motor domain of fungal chitin synthase V is dispensable for vesicle motility but required for virulence of the maize pathogen Ustilago maydis. Plant Cell 22, 2476–2494 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bottin, A., Kämper, J. & Kahmann, R. Isolation of a carbon source-regulated gene from Ustilago maydis. Mol. Gen. Genet. 253, 342–352 (1996).

    CAS  PubMed  Google Scholar 

  28. Dichtl, K., Samantaray, S. & Wagener, J. Cell wall integrity signaling in human pathogenic fungi. Cell Microbiol. http://dx.doi.org/10.1111/cmi.12612 (2016).

  29. Levin, D. E. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189, 1145–1175 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Munro, C. A. Chitin and glucan, the yin and yang of the fungal cell wall, implications for antifungal drug discovery and therapy. Adv. Appl. Microbiol. 83, 145–172 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Walworth, N. C. & Novick, P. J. Purification and characterization of constitutive secretory vesicles from yeast. J. Cell Biol. 105, 163–174 (1987).

    Article  CAS  PubMed  Google Scholar 

  32. Jena, B. P. Intracellular organelle dynamics at nm resolution. Methods Cell. Biol. 90, 19–37 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Schuster, M., Lipowsky, R., Assmann, M. A., Lenz, P. & Steinberg, G. Transient binding of dynein controls bidirectional long-range motility of early endosomes. Proc. Natl Acad. Sci. USA 108, 3618–3623 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schuster, M. et al. Controlled and stochastic retention concentrates dynein at microtubule ends to keep endosomes on track. EMBO J. 30, 652–664 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fuchs, U., Manns, I. & Steinberg, G. Microtubules are dispensable for the initial pathogenic development but required for long-distance hyphal growth in the corn smut fungus Ustilago maydis. Mol. Biol. Cell 16, 2746–2758 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gaughran, J. P., Lai, M. H., Kirsch, D. R. & Silverman, S. J. Nikkomycin Z is a specific inhibitor of Saccharomyces cerevisiae chitin synthase isozyme Chs3 in vitro and in vivo. J. Bacteriol. 176, 5857–5860 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bowman, J. C. et al. The antifungal echinocandin caspofungin acetate kills growing cells of Aspergillus fumigatus in vitro. Antimicrob. Agents Chemother. 46, 3001–3012 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Verdin, J., Bartnicki-Garcia, S. & Riquelme, M. Functional stratification of the Spitzenkorper of Neurospora crassa. Mol. Microbiol. 74, 1044–1053 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Sanchez-Leon, E. & Riquelme, M. Live imaging of β-1,3-glucan synthase FKS-1 in Neurospora crassa hyphae. Fungal Genet. Biol. 82, 104–107 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Fajardo-Somera, R. A. et al. Dissecting the function of the different chitin synthases in vegetative growth and sexual development in Neurospora crassa. Fungal Genet. Biol. 75, 30–45 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Collinge, A. J. & Trinci, A. P. Hyphal tips of wild-type and spreading colonial mutants of Neurospora crassa. Arch. Microbiol. 99, 353–368 (1974).

    Article  CAS  PubMed  Google Scholar 

  43. James, T. Y. & Berbee, M. L. No jacket required—new fungal lineage defies dress code: recently described zoosporic fungi lack a cell wall during trophic phase. BioEssays 34, 94–102 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. James, T. Y. et al. Shared signatures of parasitism and phylogenomics unite cryptomycota and microsporidia. Curr. Biol. 23, 1548–1553 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Takeshita, N., Yamashita, S., Ohta, A. & Horiuchi, H. Aspergillus nidulans class V and VI chitin synthases CsmA and CsmB, each with a myosin motor-like domain, perform compensatory functions that are essential for hyphal tip growth. Mol. Microbiol. 59, 1380–1394 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Tsuizaki, M., Ohta, A. & Horiuchi, H. Myosin motor-like domain of class VI chitin synthase CsmB of Aspergillus nidulans is not functionally equivalent to that of class V chitin synthase CsmA. Biosci. Biotechnol. Biochem. 77, 369–374 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Takeshita, N. et al. Transportation of Aspergillus nidulans class III and V chitin synthases to the hyphal tips depends on conventional kinesin. PloS One 10, e0125937 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Brachmann, A., Weinzierl, G., Kamper, J. & Kahmann, R. Identification of genes in the bW/bE regulatory cascade in Ustilago maydis. Mol. Microbiol. 42, 1047–1063 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Theisen, U., Straube, A. & Steinberg, G. Dynamic rearrangement of nucleoporins during fungal ‘open’ mitosis. Mol. Biol. Cell 19, 1230–1240 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bölker, M., Genin, S., Lehmler, C. & Kahmann, R. Genetic regulation of mating and dimorphism in Ustilago maydis. Can. J. Bot. 73, 320–325 (1995).

    Article  Google Scholar 

  51. Steinberg, G. & Schuster, M. The dynamic fungal cell. Fungal Biol. Rev. 25, 14–37 (2011).

    Article  Google Scholar 

  52. Kilaru, S. & Steinberg, G. Yeast recombination-based cloning as an efficient way of constructing vectors for Zymoseptoria tritici. Fungal Genet. Biol. 79, 76–83 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Higuchi, Y., Ashwin, P., Roger, Y. & Steinberg, G. Early endosome motility spatially organizes polysome distribution. J. Cell Biol. 204, 343–357 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Holliday, R. in Ustilago maydis (ed. King, R. C. ) 575–595 (Plenum Press, 1974).

    Google Scholar 

  55. Schulz, B. et al. The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60, 295–306 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Steinberg, G. et al. Motor-driven motility of fungal nuclear pores organizes chromosomes and fosters nucleocytoplasmic transport. J. Cell Biol. 198, 343–355 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wedlich-Söldner, R., Bölker, M., Kahmann, R. & Steinberg, G. A putative endosomal t-SNARE links exo- and endocytosis in the phytopathogenic fungus Ustilago maydis. EMBO J. 19, 1974–1986 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tamura, K. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank U. Fuchs, S. Milne and P. Splatt for technical support. M.M.-U. thanks N.J. Talbot for financial support. G.S. acknowledges J. Stajich for fruitful discussions. This work was supported by the Biotechnology & Biological Sciences Research Council (grants BB/H019774/1 and BB/I020667/1 to G.S.).

Author information

Authors and Affiliations

Authors

Contributions

G.S. developed the research plan and the experimental strategy, directed the project, analysed data, assembled all figures and videos and wrote the manuscript (with the exception of the Methods, which was written mainly by M.M.-U., M.S. and C.H.). M.M.-U. generated strains and plasmids, performed experiments and analysed data. M.S. performed experiments, generated strains and analysed data. Y.H. and S.K. generated strains and plasmids. C.H. performed electron microscopy. S.J.G. discussed the project and data. All authors corrected the manuscript and discussed data.

Corresponding author

Correspondence to Gero Steinberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1-6 (Colour-adjusted main figures for readers with red-green colour blindness), Supplementary Figures 7-16, Supplementary Tables 1-3, Supplementary References (PDF 3612 kb)

Supplementary Video 1

Motility of Chs6-GFP3 in U. Maydis. (MOV 429 kb)

Supplementary Video 2

Motility of Mcs1-GFP3 and Chs6-GFP3 in a yeast-like cell of U. maydis. (MOV 417 kb)

Supplementary Video 3

Co-motility of mCherry3-Mcs1 and Chs6-GFP3 in a yeast-like cell of U. maydis. (MOV 127 kb)

Supplementary Video 4

Co-motility of mCherry3-Mcs1 and GFP3-Gsc1 in a yeast-like cell of U. maydis. (MOV 226 kb)

Supplementary Video 5

Diffusive motion of Mcs1-GFP3 in control cells, cell wall-less protoplasts and in the presence of the CHS inhibitor nikkomycin Z and the GS inhibitor caspofungin. (MOV 448 kb)

Supplementary Video 6

Co-motility of mCherry3-Mcs1 and GFP3-Gsc1 in a hyphal cell of U. maydis. (MOV 251 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuster, M., Martin-Urdiroz, M., Higuchi, Y. et al. Co-delivery of cell-wall-forming enzymes in the same vesicle for coordinated fungal cell wall formation. Nat Microbiol 1, 16149 (2016). https://doi.org/10.1038/nmicrobiol.2016.149

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.149

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing