Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Widespread formation of alternative 3′ UTR isoforms via transcription termination in archaea

Abstract

Transcription termination sets the 3′ end boundaries of RNAs and plays key roles in gene regulation. Although termination has been well studied in bacteria, the signals that mediate termination in archaea remain poorly understood. Here, we applied term-seq to comprehensively map RNA 3′ termini, with single-base precision, in two phylogenetically distant archaea: Methanosarcina mazei and Sulfolobus acidocaldarius. Comparison of RNA 3′ ends across hundreds of genes revealed the sequence composition of transcriptional terminators in each organism, highlighting both common and divergent characteristics between the different archaeal phyla. We find that, in contrast to bacteria, a considerable portion of archaeal genes are controlled by multiple consecutive terminators, generating several alternative 3′ untranslated region isoforms for >30% of the genes. These alternative isoforms often present marked length differences, implying that archaea can employ regulation via alternative 3′ untranslated regions, similar to eukaryotes. Although most of the terminators are intergenic, we discover numerous cases in which termination of one gene occurs within the coding region of a downstream gene, implying that leaky termination may tune inter-transcript stoichiometry in multi-gene operons. These results provide the first high-throughput maps of transcriptional terminators in archaea and point to an evolutionary path linking bacterial and eukaryal non-coding regulatory strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence and structural determinants of transcription terminators in M. mazei.
Figure 2: Multiple terminators control gene boundaries in M. mazei.
Figure 3: Determinants of transcription terminators in S. acidocaldarius.
Figure 4: Abundant overlapping termination suggests possible role in gene regulation.

Similar content being viewed by others

References

  1. Peters, J. M., Vangeloff, A. D. & Landick, R. Bacterial transcription terminators: the RNA 3′-end chronicles. J. Mol. Biol. 412, 793–813 (2011).

    Article  CAS  Google Scholar 

  2. Porrua, O. & Libri, D. Transcription termination and the control of the transcriptome: why, where and how to stop. Nat. Rev. Mol. Cell Biol. 16, 190–202 (2015).

    Article  CAS  Google Scholar 

  3. Peters, J. M. et al. Rho and NusG suppress pervasive antisense transcription in Escherichia coli. Genes Dev. 26, 2621–2633 (2012).

    Article  CAS  Google Scholar 

  4. Mellin, J. R. & Cossart, P. Unexpected versatility in bacterial riboswitches. Trends Genet. 31, 150–156 (2015).

    Article  CAS  Google Scholar 

  5. Barrick, J. E. & Breaker, R. R. The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biol. 8, R239 (2007).

    Article  Google Scholar 

  6. Santangelo, T. J. & Artsimovitch, I. Termination and antitermination: RNA polymerase runs a stop sign. Nat. Rev. Microbiol. 9, 319–329 (2011).

    Article  CAS  Google Scholar 

  7. Gusarov, I. & Nudler, E. The mechanism of intrinsic transcription termination. Mol. Cell 3, 495–504 (1999).

    Article  CAS  Google Scholar 

  8. Santangelo, T. J. & Reeve, J. N. Archaeal RNA polymerase is sensitive to intrinsic termination directed by transcribed and remote sequences. J. Mol. Biol. 355, 196–210 (2006).

    Article  CAS  Google Scholar 

  9. Brenneis, M., Hering, O., Lange, C. & Soppa, J. Experimental characterization of cis-acting elements important for translation and transcription in halophilic archaea. PLoS Genet. 3, e229 (2007).

    Article  Google Scholar 

  10. Spitalny, P. & Thomm, M. A polymerase III-like reinitiation mechanism is operating in regulation of histone expression in archaea. Mol. Microbiol. 67, 958–970 (2008).

    Article  CAS  Google Scholar 

  11. Hirtreiter, A., Grohmann, D. & Werner, F. Molecular mechanisms of RNA polymerase-the F/E (RPB4/7) complex is required for high processivity in vitro. Nucleic Acids Res. 38, 585–596 (2009).

    Article  Google Scholar 

  12. Santangelo, T. J., Cubonová, L., Skinner, K. M. & Reeve, J. N. Archaeal intrinsic transcription termination in vivo. J. Bacteriol. 191, 7102–7108 (2009).

    Article  CAS  Google Scholar 

  13. Reiter, W. D., Palm, P. & Zillig, W. Transcription termination in the archaebacterium Sulfolobus: signal structures and linkage to transcription initiation. Nucleic Acids Res. 16, 2445–2459 (1988).

    Article  CAS  Google Scholar 

  14. Dar, D. et al. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science 352, aad9822 (2016).

    Article  Google Scholar 

  15. Taboada, B., Ciria, R., Martinez-Guerrero, C. E. & Merino, E. ProOpDB: Prokaryotic Operon DataBase. Nucleic Acids Res. 40, D627–D631 (2012).

    Article  CAS  Google Scholar 

  16. Jäger, D. et al. Deep sequencing analysis of the Methanosarcina mazei Gö1 transcriptome in response to nitrogen availability. Proc. Natl Acad. Sci. USA 106, 21878–21882 (2009).

    Article  Google Scholar 

  17. Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26 (2011).

    Article  Google Scholar 

  18. Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  Google Scholar 

  19. Ray-Soni, A., Bellecourt, M. J. & Landick, R. Mechanisms of bacterial transcription termination: all good things must end. Annu. Rev. Biochem. 85, 319–347 (2016).

    Article  CAS  Google Scholar 

  20. Wurtzel, O. et al. Comparative transcriptomics of pathogenic and non-pathogenic Listeria species. Mol. Syst. Biol. 8, 583 (2012).

    Article  Google Scholar 

  21. Sesto, N., Wurtzel, O., Archambaud, C., Sorek, R. & Cossart, P. The excludon: a new concept in bacterial antisense RNA-mediated gene regulation. Nat. Rev. Microbiol. 11, 75–82 (2012).

    Article  Google Scholar 

  22. Georg, J. & Hess, W. R. cis-Antisense RNA, another level of gene regulation in bacteria. Microbiol. Mol. Biol. Rev. 75, 286–300 (2011).

    Article  CAS  Google Scholar 

  23. Di Giammartino, D. C., Nishida, K. & Manley, J. L. Mechanisms and consequences of alternative polyadenylation. Mol. Cell 43, 853–866 (2011).

    Article  CAS  Google Scholar 

  24. Jun, S. et al. The X-ray crystal structure of the euryarchaeal RNA polymerase in an open-clamp configuration. Nat. Commun. 5, 1–11 (2014).

    Article  Google Scholar 

  25. Werner, F. & Grohmann, D. Evolution of multisubunit RNA polymerases in the three domains of life. Nat. Rev. Microbiol. 9, 85–98 (2011).

    Article  CAS  Google Scholar 

  26. Koide, T. et al. Prevalence of transcription promoters within archaeal operons and coding sequences. Mol. Syst. Biol. 5, 285 (2009).

    Article  Google Scholar 

  27. Ruiz de los Mozos, I. et al. Base pairing interaction between 5′- and 3′- UTRs controls icaR mRNA translation in Staphylococcus aureus. PLoS Genet. 9, e1004001 (2013).

    Article  Google Scholar 

  28. Storz, G., Vogel, J. & Wassarman, K. M. Regulation by small RNAs in bacteria: expanding frontiers. Mol. Cell 43, 880–891 (2011).

    Article  CAS  Google Scholar 

  29. Wurtzel, O. et al. A single-base resolution map of an archaeal transcriptome. Genome Res. 20, 133–141 (2010).

    Article  CAS  Google Scholar 

  30. Pain, A. et al. An assessment of bacterial small RNA target prediction programs. RNA Biol. 12, 509–513 (2015).

    Article  Google Scholar 

  31. Jäger, D., Förstner, K. U., Sharma, C. M., Santangelo, T. J. & Reeve, J. N. Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis. BMC Genomics 15, 684 (2014).

    Article  Google Scholar 

  32. Deppenmeier, U., Blaut, M., Mahlmann, A. & Gottschalk, G. Reduced coenzyme F420: heterodisulfide oxidoreductase, a proton-translocating redox system in methanogenic bacteria. Proc. Natl Acad. Sci. USA 87, 9449–9453 (1990).

    Article  CAS  Google Scholar 

  33. Weidenbach, K., Ehlers, C. & Schmitz, R. A. The transcriptional activator NrpA is crucial for inducing nitrogen fixation in Methanosarcina mazei Gö1 under nitrogen-limited conditions. FEBS J. 281, 3507–3522 (2014).

    Article  CAS  Google Scholar 

  34. Brock, T. D., Brock, K. M., Belly, R. T. & Weiss, R. L. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. für Mikrobiol. 84, 54–68 (1972).

    Article  CAS  Google Scholar 

  35. Cohen, O. et al. Comparative transcriptomics across the prokaryotic tree of life. Nucleic Acids Res. 44, W46–W53 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Shamir, S. Doron, A. Millman and A. Lopatina for discussions. R.S. was supported, in part, by the Israel Science Foundation (personal grant no. 1303/12 and I-CORE grant no. 1796/12), the ERC-StG programme (grant no. 260432), the Abisch–Frenkel Foundation, the Pasteur–Weizmann council grant, the Minerva Foundation, the Leona M. and Harry B. Helmsley Charitable Trust and by a DIP grant from the Deutsche Forschungs Gemeinschaft (DFG). D.P. was funded by the DFG (Schm1052/9-2).

Author information

Authors and Affiliations

Authors

Contributions

D.D., R.A.S. and R.S conceived and designed the research studies. D.D. and D.P. performed the experiments. D.D. and R.S. analysed the data. D.D., RA.S., D.P. and R.S. wrote the manuscript.

Corresponding author

Correspondence to Rotem Sorek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1-4, Supplementary Table Legends 1-9, Supplementary References (PDF 702 kb)

Supplementary Tables

Supplementary Tables 1-9 (XLSX 543 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dar, D., Prasse, D., Schmitz, R. et al. Widespread formation of alternative 3′ UTR isoforms via transcription termination in archaea. Nat Microbiol 1, 16143 (2016). https://doi.org/10.1038/nmicrobiol.2016.143

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing