Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rescue of non-human primates from advanced Sudan ebolavirus infection with lipid encapsulated siRNA

Abstract

Although significant progress has been made in developing therapeutics against Zaire ebolavirus, these therapies do not protect against other Ebola species such as Sudan ebolavirus (SUDV). Here, we describe an RNA interference therapeutic comprising siRNA targeting the SUDV VP35 gene encapsulated in lipid nanoparticle (LNP) technology with increased potency beyond formulations used in TKM-Ebola clinical trials. Twenty-five rhesus monkeys were challenged with a lethal dose of SUDV. Twenty animals received siRNA-LNP beginning at 1, 2, 3, 4 or 5 days post-challenge. VP35-targeting siRNA-LNP treatment resulted in up to 100% survival, even when initiated when fever, viraemia and disease signs were evident. Treatment effectively controlled viral replication, mediating up to 4 log10 reductions after dosing. Mirroring clinical findings, a correlation between high viral loads and fatal outcome was observed, emphasizing the importance of stratifying efficacy according to viral load. In summary, strong survival benefit and rapid control of SUDV replication by VP35-targeting LNP confirm its therapeutic potential in combatting this lethal disease.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: siRNAs targeting SUDV Lpol, NP, VP35 and VP24 are active against their viral mRNA targets and display potent antiviral activity in infected cells.
Figure 2: siRNA-LNP treatment in NHPs lethally infected with SUDV results in increased survival and effective viral control.
Figure 3: siVP35-LNP treatment ameliorates disease symptoms.
Figure 4: siVP35-LNP treatment protects against liver and renal dysfunction induced by SUDV infection.
Figure 5: H&E lesions and immunohistochemistry using anti-SUDV antibody.

References

  1. 1

    Ebola Situation Report (World Health Organization, 2016); http://apps.who.int/iris/bitstream/10665/204172/1/ebolasitrep_20Jan2016_eng.pdf?ua=1

  2. 2

    Towner, J. S. et al. Rapid diagnosis of Ebola hemorrhagic fever by reverse transcription-PCR in an outbreak setting and assessment of patient viral load as a predictor of outcome. J. Virol. 78, 4330–4341 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3

    Geisbert, T. W. et al. Vesicular stomatitis virus-based vaccines protect nonhuman primates against aerosol challenge with Ebola and Marburg viruses. Vaccine 26, 6894–6900 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4

    Herbert, A. S. et al. Venezuelan equine encephalitis virus replicon particle vaccine protects nonhuman primates from intramuscular and aerosol challenge with ebolavirus. J. Virol. 87, 4952–4964 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5

    Geisbert, T. W. et al. Single-injection vaccine protects nonhuman primates against infection with Marburg virus and three species of Ebola virus. J. Virol. 83, 7296–7304 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6

    Pratt, W. D. et al. Protection of nonhuman primates against two species of Ebola virus infection with a single complex adenovirus vector. Clin. Vaccine Immunol. 17, 572–581 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7

    Pettitt, J. et al. Therapeutic intervention of Ebola virus infection in rhesus macaques with the MB-003 monoclonal antibody cocktail. Sci. Transl. Med. 5, 199ra113 (2013).

    PubMed  Article  Google Scholar 

  8. 8

    Qiu, X. et al. Sustained protection against Ebola virus infection following treatment of infected nonhuman primates with ZMAb. Sci. Rep. 3, 3365 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9

    Qiu, X. et al. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 514, 47–53 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Warren, T. K. et al. A single phosphorodiamidate morpholino oligomer targeting VP24 protects rhesus monkeys against lethal Ebola virus infection. mBio 6, e02344-14 (2015).

  11. 11

    Reynard, O. et al. Identification of a new ribonucleoside inhibitor of Ebola virus replication. Viruses 7, 6233–6240 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12

    Holtzberg, F. et al. Pan-ebolavirus and pan-filovirus mouse monoclonal antibodies protection against Ebola and Sudan viruses. J. Virol. 90, 266–278 (2015).

    Article  Google Scholar 

  13. 13

    Keck, Z. et al. Macaque monoclonal antibodies targeting novel conserved epitopes within filovirus glycoprotein. J. Virol. 90, 279–291(2015).

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14

    Frei, J. et al. Bispecific antibody affords complete post-exposure protection of mice from both Ebola (Zaire) and Sudan viruses. Sci. Rep. 6, 19193 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Furuyama, W. et al. Discovery of an antibody for pan-ebolavirus therapy. Sci. Rep. 6, 20514 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16

    Howell, K. et al. Antibody treatment of Ebola and Sudan virus infection via a uniquely exposed epitope within the glycoprotein receptor-binding site. Cell Rep. 15, 1514–1526 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17

    Haussecker, D. Current issues of RNAi therapeutics delivery and development. J. Control Rel. 195, 49–54 (2014).

    CAS  Article  Google Scholar 

  18. 18

    Geisbert, T. W. et al. Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet 375, 1896–1905 (2010).

    CAS  PubMed  Article  Google Scholar 

  19. 19

    Thi, E. P. et al. Marburg virus infection in nonhuman primates: therapeutic treatment by lipid-encapsulated siRNA. Sci. Transl. Med. 6, 250ra116 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20

    Thi, E. P. et al. Lipid nanoparticle siRNA treatment of Ebola-virus-Makona-infected nonhuman primates. Nature 521, 362–365 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21

    Dunning, J. et al. Experimental treatment of Ebola virus disease with TKM-130803 A single arm phase 2 clinical trial. PLoS Med. 13, e1001997 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  22. 22

    Mattia, J. G. et al. Early clinical sequelae of Ebola virus disease in Sierra Leone: a cross-sectional study. Lancet Infect Dis. 16, 331–338 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23

    Clark, D. V. et al. Long-term sequelae after Ebola virus disease in Bundibugyo, Uganda: a retrospective cohort study. Lancet Infect. Dis. 15, 905–912 (2015).

    PubMed  Article  Google Scholar 

  24. 24

    Uyeki, T. M. et al. Ebola virus persistence in semen of male survivors. Clin. Inf. Dis. 62, 1552–1555 (2016).

    Article  Google Scholar 

  25. 25

    Tiffany, A. et al. Ebola virus disease complications as experienced by survivors in Sierra Leone. Clin. Inf. Dis. 62, 1360–1366 (2016).

    Article  Google Scholar 

  26. 26

    Prins, K. C. et al. Mutations abrogating VP35 interaction with double-stranded RNA render Ebola virus avirulent in guinea pigs. J. Virol. 84, 3004–3015 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27

    Basler, C. F. et al. The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3. J. Virol. 77, 7945–7956 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Feng, Z., Cerveny, M., Yan, Z. & He, B. The VP35 protein of Ebola virus inhibits the antiviral effect mediated by double-stranded RNA-dependent protein kinase PKR. J. Virol. 81, 182–192 (2007).

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Cardenas, W. B. et al. Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J. Virol. 80, 5168–5178 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Ursic-Bedoya, R. et al. Protection against lethal Marburg virus infection mediated by lipid encapsulated small interfering RNA. J. Infect. Dis. 209, 562–570 (2014).

    CAS  PubMed  Article  Google Scholar 

  31. 31

    Judge, A. D., Bola, G., Lee, A. C. & MacLachlan, I. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol. Ther. 13, 494–505 (2006).

    CAS  PubMed  Article  Google Scholar 

  32. 32

    Judge, A. & MacLachlan, I. Overcoming the innate immune response to small interfering RNA. Hum. Gene Ther. 19, 111–124 (2008).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Sanchez, A. & Rollin, P. E. Complete genome sequence of an Ebola virus (Sudan species) responsible for a 2000 outbreak of human disease in Uganda. Virus Res. 113, 16–25 (2005).

    CAS  PubMed  Article  Google Scholar 

  34. 34

    Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

    CAS  PubMed  Article  Google Scholar 

  35. 35

    Leung, D. W. et al. Structural basis for dsRNA recognition and interferon antagonism by Ebola VP35. Nat. Struct. Mol. Biol. 17, 165–172 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Mateo, M., Reid, S. P., Leung, L. W., Basler, C. F. & Volchkov, V. E. Ebolavirus VP24 binding to karyopherins is required for inhibition of interferon signaling. J. Virol. 84, 1169–1175 (2010).

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Reid, S. P. et al. Ebola virus VP24 binds karyopherin α1 and blocks STAT1 nuclear accumulation. J. Virol. 80, 5156–5167 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38

    Halfmann, P., Neumann, G. & Kawaoka, Y. The Ebolavirus VP24 protein blocks phosphorylation of p38 mitogen-activated protein kinase. J. Infect. Dis. 204, (Suppl. 3), S953–S956 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    Ilinykh, P. A. et al. Different temporal effects of Ebola virus VP35 and VP24 proteins on global gene expression in human dendritic cells. J. Virol. 89, 7567–7583 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Haasnoot, J. et al. The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathogens 3, e86 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Fabozzi, G., Nabel, C. S., Dolan, M. A. & Sullivan, N. J. Ebolavirus proteins suppress the effects of small interfering RNA by direct interaction with the mammalian RNA interference pathway. J. Virol. 85, 2512–2523 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Jacobs, M. et al. Late Ebola virus relapse causing meningoencephalitis: a case report. Lancet 388, 498–503 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43

    De La Vega, M. A. et al. Ebola viral load at diagnosis associates with patient outcome and outbreak evolution. J. Clin. Invest. 125, 4421–4428 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44

    Fitzpatrick, G. et al. The contribution of Ebola viral load at admission and other patient characteristics to mortality in a Médecins sans Frontières Ebola case management centre, Kailahun, Sierra Leone, June–October 2014. J. Infect. Dis. 212, 1752–1758 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  45. 45

    Schieffelin, J. S. et al. Clinical illness and outcomes in patients with Ebola in Sierra Leone. N. Engl. J. Med. 371, 2092–2100 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46

    Howlett, P. et al. Ebola virus disease complicated by late-onset encephalitis and polyarthritis, Sierra Leone. Emerg. Infect. Dis. 22, 150–152 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Martini, G. A. & Schmidt, H. A. Spermatogenic transmission of the ‘Marburg virus’. (Causes of ‘Marburg simian disease’). Klinische Wochenschrift 46, 398–400 (1968).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Mate, S. E. et al. Molecular evidence of sexual transmission of Ebola virus. N. Engl. J. Med. 373, 2448–2454 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49

    Deen, G. F. et al. Ebola RNA persistence in semen of Ebola virus disease survivors—preliminary report. N. Engl. J. Med. http://dx.doi.org/10.1056/NEJMoa1511410 (2015).

  50. 50

    Ma, H. et al. Formulated minimal-length synthetic small hairpin RNAs are potent inhibitors of hepatitis C virus in mice with humanized livers. Gastroenterology 146, 63–66 (2014).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors thank V. Borisevich for assistance with clinical pathology assays performed in the GNL BSL-4 laboratory, J. Heyes and K. Lam for data comparing endogenous gene silencing potency across LNP formulations, and S. Klassen for his assistance with siRNA-LNP preparation. This study was supported by the Department of Health and Human Services, National Institutes of Health grant no. U19AI109711 to T.W.G. and E.P.T., and UC7AI094660 for BSL-4 operations support of the Galveston National Laboratory.

Author information

Affiliations

Authors

Contributions

R.U.-B. and M.R. designed the siRNA and R.U.-B. conducted the dual luciferase reporter studies. R.U.-B., C.E.M., M.R., I.M. and T.W.G. designed the in vitro infection study. K.N.A. and C.E.M. performed the in vitro infection study. E.P.T., C.E.M., A.C.H.L., I.M. and T.W.G. conceived and designed the NHP studies. C.E.M., J.B.G., D.J.D. and T.W.G. performed the NHP challenge and treatment experiments and conducted clinical observations of the animals. J.B.G., K.N.A. and D.J.D. performed the clinical pathology assays. J.B.G. performed the SUDV infectivity assays. C.E.M. and K.N.A. performed the PCR assays. E.P.T., C.E.M., J.B.G., K.N.A., D.J.D., K.A.F., A.S.K, A.C.H.L. and T.W.G. analysed the data. K.A.F. performed histological and immunohistochemical analysis of the data. E.P.T., C.E.M., A.C.H.L. and T.W.G. wrote the paper. All authors had access to all of the data and approved the final version of the manuscript.

Corresponding author

Correspondence to Thomas W. Geisbert.

Ethics declarations

Competing interests

A.L., I.M. and T.W.G. claim intellectual property regarding RNA interference for the treatment of filovirus infections. I.M. and T.W.G. are co-inventors on US patent 7,838,658 (‘siRNA silencing of filovirus gene expression’) and A.L., I.M. and T.W.G. are co-inventors on US patent 8,716,464 (‘Compositions and methods for silencing Ebola virus gene expression’). The other authors declare no competing interests. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the University of Texas Medical Branch.

Supplementary information

Supplementary Information

Supplementary Table 1, Supplementary Figures 1-5 (PDF 808 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thi, E., Lee, A., Geisbert, J. et al. Rescue of non-human primates from advanced Sudan ebolavirus infection with lipid encapsulated siRNA. Nat Microbiol 1, 16142 (2016). https://doi.org/10.1038/nmicrobiol.2016.142

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing