NPF motifs in the vaccinia virus protein A36 recruit intersectin-1 to promote Cdc42:N-WASP-mediated viral release from infected cells


During its egress, vaccinia virus transiently recruits AP-2 and clathrin after fusion with the plasma membrane. This recruitment polarizes the viral protein A36 beneath the virus, enhancing actin polymerization and the spread of infection. We now demonstrate that three NPF motifs in the C-terminus of A36 recruit AP-2 and clathrin by interacting directly with the Epsin15 homology domains of Eps15 and intersectin-1. A36 is the first identified viral NPF motif containing protein shown to interact with endocytic machinery. Vaccinia still induces actin tails in the absence of the A36 NPF motifs. Their loss, however, reduces the cell-to-cell spread of vaccinia. This is due to a significant reduction in virus release from infected cells, as the lack of intersectin-1 recruitment leads to a loss of Cdc42 activation, impairing N-WASP-driven Arp2/3-mediated actin polymerization. Our results suggest that initial A36-mediated virus release plays a more important role than A36-driven super-repulsion in promoting the cell-to-cell spread of vaccinia.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Deletion of the last 35 residues of A36 induces long actin tails.
Figure 2: A36 NPF motifs interact with intersectin-1 and Eps15.
Figure 3: A36 NPF motifs bind directly to the EH domains of Eps15 and intersectin-1.
Figure 4: The A36 NPF motifs recruit clathrin, AP-2, intersectin-1 and Eps15.
Figure 5: A36 NPF motifs regulate actin tail length and viral spread.
Figure 6: Intersectin-1-mediated activation of Cdc42 promotes virus release.


  1. 1

    Leite, F. & Way, M. The role of signalling and the cytoskeleton during vaccinia virus egress. Virus Res. 209, 87–99 (2015).

    Article  Google Scholar 

  2. 2

    Cudmore, S., Cossart, P., Griffiths, G. & Way, M. Actin-based motility of vaccinia virus. Nature 378, 636–638 (1995).

    Article  Google Scholar 

  3. 3

    Frischknecht, F. et al. Actin based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401, 926–929 (1999).

    Article  Google Scholar 

  4. 4

    Hollinshead, M. et al. Vaccinia virus utilizes microtubules for movement to the cell surface. J. Cell Biol. 154, 389–402 (2001).

    Article  Google Scholar 

  5. 5

    Ward, B. M. & Moss, B. Vaccinia virus intracellular movement is associated with microtubules and independent of actin tails. J. Virol. 75, 11651–11663 (2001).

    Article  Google Scholar 

  6. 6

    Scaplehorn, N. et al. Grb2 and Nck act cooperatively to promote actin-based motility of vaccinia virus. Curr. Biol. 12, 740–745 (2002).

    Article  Google Scholar 

  7. 7

    Newsome, T. P., Scaplehorn, N. & Way, M. SRC mediates a switch from microtubule- to actin-based motility of vaccinia virus. Science 306, 124–129 (2004).

    Article  Google Scholar 

  8. 8

    Reeves, P. M. et al. Disabling poxvirus pathogenesis by inhibition of Abl-family tyrosine kinases. Nature Med. 11, 731–739 (2005).

    Article  Google Scholar 

  9. 9

    Newsome, T. P., Weisswange, I., Frischknecht, F. & Way, M. Abl collaborates with Src family kinases to stimulate actin-based motility of vaccinia virus. Cell Microbiol. 8, 233–241 (2006).

    Article  Google Scholar 

  10. 10

    Moreau, V. et al. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nature Cell Biol. 2, 441–448 (2000).

    Article  Google Scholar 

  11. 11

    Zettl, M. & Way, M. The WH1 and EVH1 domains of WASP and Ena/VASP family members bind distinct sequence motifs. Curr. Biol. 12, 1617–1622 (2002).

    Article  Google Scholar 

  12. 12

    Weisswange, I., Newsome, T. P., Schleich, S. & Way, M. The rate of N-WASP exchange limits the extent of ARP2/3-complex-dependent actin-based motility. Nature 458, 87–91 (2009).

    Article  Google Scholar 

  13. 13

    Donnelly, S. K., Weisswange, I., Zettl, M. & Way, M. WIP provides an essential link between Nck and N-WASP during Arp2/3-dependent actin polymerization. Curr. Biol. 23, 999–1006 (2013).

    Article  Google Scholar 

  14. 14

    Humphries, A. C., Donnelly, S. K. & Way, M. Cdc42 and the Rho GEF intersectin-1 collaborate with Nck to promote N-WASP-dependent actin polymerisation. J. Cell Sci. 127, 673–685 (2014).

    Article  Google Scholar 

  15. 15

    Hussain, N. K. et al. Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP. Nature Cell Biol. 3, 927–932 (2001).

    Article  Google Scholar 

  16. 16

    Hunter, M. P., Russo, A. & O'Bryan, J. P. Emerging roles for intersectin (ITSN) in regulating signaling and disease pathways. Int. J. Mol. Sci. 14, 7829–7852 (2013).

    Article  Google Scholar 

  17. 17

    Pechstein, A. et al. Regulation of synaptic vesicle recycling by complex formation between intersectin 1 and the clathrin adaptor complex AP2. Proc. Natl Acad. Sci. USA 107, 4206–4211 (2010).

    Article  Google Scholar 

  18. 18

    Humphries, A. C. et al. Clathrin potentiates vaccinia-induced actin polymerization to facilitate viral spread. Cell Host Microbe 12, 346–359 (2012).

    Article  Google Scholar 

  19. 19

    Traub, L. M. Tickets to ride: selecting cargo for clathrin-regulated internalization. Nature Rev. Mol. Cell Biol. 10, 583–596 (2009).

    Article  Google Scholar 

  20. 20

    Naslavsky, N. & Caplan, S. EHD proteins key conductors of endocytic transport. Trends Cell Biol. 21, 122–131 (2011).

    Article  Google Scholar 

  21. 21

    Doceul, V., Hollinshead, M., van der Linden, L. & Smith, G. L. Repulsion of superinfecting virions: a mechanism for rapid virus spread. Science 327, 873–876 (2010).

    Article  Google Scholar 

  22. 22

    Horsington, J. et al. A36-dependent actin filament nucleation promotes release of vaccinia virus. PLoS Pathogens 9, e1003239 (2013).

    Article  Google Scholar 

  23. 23

    Miki, H., Sasaki, T., Takai, Y. & Takenawa, T. Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391, 93–96 (1998).

    Article  Google Scholar 

  24. 24

    Friesland, A. et al. Small molecule targeting Cdc42-intersectin interaction disrupts Golgi organization and suppresses cell motility. Proc. Natl Acad. Sci. USA 110, 1261–1266 (2013).

    Article  Google Scholar 

  25. 25

    Czuchra, A. et al. Cdc42 is not essential for filopodium formation, directed migration, cell polarization, and mitosis in fibroblastoid cells. Mol. Biol. Cell 16, 4473–4484 (2005).

    Article  Google Scholar 

  26. 26

    Mercer, J. et al. Vaccinia virus strains use distinct forms of macropinocytosis for host-cell entry. Proc. Natl Acad. Sci. USA 107, 9346–9351 (2010).

    Article  Google Scholar 

  27. 27

    De Beer, T., Carter, R. E., Lobel-Rice, K. E., Sorkin, A. & Overduin, M. Structure and Asn-Pro-Phe binding pocket of the Eps15 homology domain. Science 281, 1357–1360 (1998).

    Article  Google Scholar 

  28. 28

    Confalonieri, S. & Di Fiore, P. P. The Eps15 homology (EH) domain. FEBS Lett. 513, 24–29 (2002).

    Article  Google Scholar 

  29. 29

    Paoluzi, S. et al. Recognition specificity of individual EH domains of mammals and yeast. EMBO J. 17, 6541–6550 (1998).

    Article  Google Scholar 

  30. 30

    Lynn, H. et al. Loss of cytoskeletal transport during egress critically attenuates ectromelia virus infection in vivo. J. Virol. 86, 7427–7443 (2012).

    Article  Google Scholar 

  31. 31

    Dodding, M. P. & Way, M. Nck- and N-WASP-dependent actin-based motility is conserved in divergent vertebrate poxviruses. Cell Host Microbe 6, 536–550 (2009).

    Article  Google Scholar 

  32. 32

    Yamabhai, M. et al. Intersectin, a novel adaptor protein with two Eps15 homology and five Src homology 3 domains. J. Biol. Chem. 273, 31401–31407 (1998).

    Article  Google Scholar 

  33. 33

    Benmerah, A., Begue, B., Dautry-Varsat, A. & Cerf-Bensussan, N. The ear of α-adaptin interacts with the COOH-terminal domain of the Eps 15 protein. J. Biol. Chem. 271, 12111–12116 (1996).

    Article  Google Scholar 

  34. 34

    Sengar, A. S., Wang, W., Bishay, J., Cohen, S. & Egan, S. E. The EH and SH3 domain Ese proteins regulate endocytosis by linking to dynamin and Eps15. EMBO J. 18, 1159–1171 (1999).

    Article  Google Scholar 

  35. 35

    Wong, K. A. et al. Intersectin (ITSN) family of scaffolds function as molecular hubs in protein interaction networks. PLoS ONE 7, e36023 (2012).

    Article  Google Scholar 

  36. 36

    Gryaznova, T. et al. Intersectin adaptor proteins are associated with actin-regulating protein WIP in invadopodia. Cell Signal 27, 1499–1508 (2015).

    Article  Google Scholar 

  37. 37

    Humphries, A. C. & Way, M. The non-canonical roles of clathrin and actin in pathogen internalization, egress and spread. Nature Rev. Microbiol. 11, 551–560 (2013).

    Article  Google Scholar 

  38. 38

    McMahon, H. T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nature Rev. Mol. Cell Biol. 12, 517–533 (2011).

    Article  Google Scholar 

  39. 39

    Hiller, G. & Weber, K. Golgi-derived membranes that contain an acylated viral polypeptide are used for vaccinia virus envelopment. J. Virol. 55, 651–659 (1985).

    Google Scholar 

  40. 40

    Röttger, S., Frischknecht, F., Reckmann, I., Smith, G. L. & Way, M. Interactions between vaccinia virus IEV membrane proteins and their roles in IEV assembly and actin tail formation. J. Virol. 73, 2863–2875 (1999).

    Google Scholar 

  41. 41

    Caplan, S. et al. A tubular EHD1-containing compartment involved in the recycling of major histocompatibility complex class I molecules to the plasma membrane. EMBO J. 21, 2557–2567 (2002)

    Article  Google Scholar 

  42. 42

    Naslavsky, N., Rahajeng, J., Sharma, M., Jovic, M. & Caplan, S. Interactions between EHD proteins and Rab11-FIP2: a role for EHD3 in early endosomal transport. Mol. Biol. Cell 17, 163–177 (2006).

    Article  Google Scholar 

  43. 43

    Sharma, M., Naslavsky, N. & Caplan, S. A role for EHD4 in the regulation of early endosomal transport. Traffic 9, 995–1018 (2008).

    Article  Google Scholar 

  44. 44

    Simone, L. C., Caplan, S. & Naslavsky, N. Role of phosphatidylinositol 4,5-bisphosphate in regulating EHD2 plasma membrane localization. PLoS ONE 8, e74519 (2013).

    Article  Google Scholar 

  45. 45

    Arakawa, Y., Cordeiro, J. V., Schleich, S., Newsome, T. & Way, M. The release of vaccinia virus from infected cells requires RhoA-mDia modulation of cortical actin. Cell Host Microbe 1, 227–240 (2007).

    Article  Google Scholar 

  46. 46

    Arakawa, Y., Cordeiro, J. V. & Way, M. F11L-mediated inhibition of RhoA-mDia signaling stimulates microtubule dynamics during vaccinia virus infection. Cell Host Microbe 1, 213–226 (2007).

    Article  Google Scholar 

  47. 47

    Snapper, S. B. et al. N-WASP deficiency reveals distinct pathways for cell surface projections and microbial actin-based motility. Nature Cell Biol. 3, 897–904 (2001).

    Article  Google Scholar 

  48. 48

    Shcherbakova, D. M. & Verkhusha, V. V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nature Methods 10, 751–754 (2013).

    Article  Google Scholar 

  49. 49

    Abella, J. V. et al. Isoform diversity in the Arp2/3 complex determines actin filament dynamics. Nature Cell Biol. 18, 76–86 (2016).

    Article  Google Scholar 

  50. 50

    Barry, D. J., Durkin, C. H., Abella, J. V. & Way, M. Open source software for quantification of cell migration, protrusions, and fluorescence intensities. J. Cell Biol. 209, 163–180 (2015).

    Article  Google Scholar 

  51. 51

    Chakrabarti, S., Sisler, J. R. & Moss, B. Compact, synthetic, vaccinia virus early/late promoter for protein expression. Biotechniques 23, 1094–1097 (1997).

    Article  Google Scholar 

  52. 52

    Boëda, B. et al. Tes, a specific Mena interacting partner, breaks the rules for EVH1 binding. Mol. Cell 28, 1071–1082 (2007).

    Article  Google Scholar 

Download references


The authors thank S. Snapper (Harvard Medical School) and C. Brakebusch (University of Copenhagen) for providing N-WASP and Cdc42 deficient cells, respectively. The authors also thank N. O'Reilly (Francis Crick Institute) for synthesizing peptides, M. Matsuda (Kyoto University) for the iRFP670 clone and S. Caplan (University of Nebraska Medical Center) for GFP-tagged EHD1–4 clones. The authors acknowledge members of the Way Laboratory and H. Walden (University of Dundee) and D. Stephens (University of Bristol) for comments on the manuscript. Research was supported by Cancer Research UK and the Francis Crick Institute.

Author information




X.S. and M.W. designed the study and wrote the manuscript. X.S. performed and analysed the experiments. I.W. constructed and analysed A36 C-terminal deletion mutants. J.P. generated pLVX-Lifeact-iRFP670 HeLa cells and A.C.H. generated pE/L-GFP-intersectin-1 clones and provided valuable discussions. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Michael Way.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1-5, Supplementary Video 1-4 legends (PDF 232610 kb)

Supplementary Video 1

Intersectin-1 and Eps15 are simultaneously recruited to CEV inducing actin tails (AVI 1171 kb)

Supplementary Video 2

NPF motifs are required for viral recruitment of intersectin-1 (AVI 816 kb)

Supplementary Video 3

NPF motifs are required for viral recruitment of Eps15 (AVI 796 kb)

Supplementary Video 4

Loss of all three A36 NPF motifs results in significantly longer actin tails and a faster velocity of the virus (AVI 3238 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Snetkov, X., Weisswange, I., Pfanzelter, J. et al. NPF motifs in the vaccinia virus protein A36 recruit intersectin-1 to promote Cdc42:N-WASP-mediated viral release from infected cells. Nat Microbiol 1, 16141 (2016).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing