Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice

Abstract

The early life microbiome plays important roles in host immunological and metabolic development. Because the incidence of type 1 diabetes (T1D) has been increasing substantially in recent decades, we hypothesized that early-life antibiotic use alters gut microbiota, which predisposes to disease. Using non-obese diabetic mice that are genetically susceptible to T1D, we examined the effects of exposure to either continuous low-dose antibiotics or pulsed therapeutic antibiotics (PAT) early in life, mimicking childhood exposures. We found that in mice receiving PAT, T1D incidence was significantly higher, and microbial community composition and structure differed compared with controls. In pre-diabetic male PAT mice, the intestinal lamina propria had lower Th17 and Treg proportions and intestinal SAA expression than in controls, suggesting key roles in transducing the altered microbiota signals. PAT affected microbial lipid metabolism and host cholesterol biosynthetic gene expression. These findings show that early-life antibiotic treatments alter the gut microbiota and its metabolic capacities, intestinal gene expression and T-cell populations, accelerating T1D onset in non-obese diabetic mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of PAT/STAT on the development of T1D and insulitis severity in NOD mice.
Figure 2: PAT alters ileal gene expression.
Figure 3: PAT alters metabolic gene expression pathways as well as metabolite composition in caecum, liver and serum.
Figure 4: Microbiota characteristics of control, STAT and PAT NOD mice.
Figure 5: Microbiota perturbation and composition in relation to the development of T1D.
Figure 6: Inoculation of germ-free NOD mice with control or PAT microbiota.

Similar content being viewed by others

References

  1. Diamond Project Group. Incidence and trends of childhood type 1 diabetes worldwide 1990–1999. Diabetic Med. 23, 857–866 (2006).

    Article  Google Scholar 

  2. Patterson, C. C. et al. Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet 373, 2027–2033 (2009).

    Article  PubMed  Google Scholar 

  3. Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Azad, M. B. & Kozyrskyj, A. L. Perinatal programming of asthma: the role of gut microbiota. Clin. Dev. Immunol. 2012, 932072 (2012).

    Article  PubMed  Google Scholar 

  5. Kozyrskyj, A. L., Ernst, P. & Becker, A. B. Increased risk of childhood asthma from antibiotic use in early life. Chest 131, 1753–1759 (2007).

    Article  PubMed  Google Scholar 

  6. Thavagnanam, S., Fleming, J., Bromley, A., Shields, M. D. & Cardwell, C. R. A meta-analysis of the association between caesarean section and childhood asthma. Clin. Exp. Allergy 38, 629–633 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Clemente, J. C. et al. The microbiome of the uncontacted Amerindians. Sci. Adv. 1, e1500183 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Kostic, A. D. et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 17, 260–273 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boursi, B., Mamtani, R., Haynes, K. & Yang, Y. X. The effect of past antibiotic exposure on diabetes risk. Eur. J. Endocrinol. 172, 639–648 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pozzilli, P., Signore, A., Williams, A. J. & Beales, P. E. NOD mouse colonies around the world—recent facts and figures. Immunol. Today 14, 193–196 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Wen, L. et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455, 1109–1113 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Leiter, E. H. The NOD mouse: a model for insulin-dependent diabetes mellitus. Curr. Protoc. Immunol. Ch. 15, Unit 15.9 (2001).

  13. Cho, I. et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488, 621–626 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cox, L. M. et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158, 705–721 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nobel, Y. R. et al. Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment. Nat. Commun. 6, 7486 (2015).

    Article  PubMed  Google Scholar 

  16. Candon, S. et al. Antibiotics in early life alter the gut microbiome and increase disease incidence in a spontaneous mouse model of autoimmune insulin-dependent diabetes. PLoS ONE 10, e0125448 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hu, Y. et al. Maternal antibiotic treatment protects offspring from diabetes development in nonobese diabetic mice by generation of tolerogenic APCs. J. Immunol. 195, 4176–4184 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Brown, K. et al. Prolonged antibiotic treatment induces a diabetogenic intestinal microbiome that accelerates diabetes in NOD mice. ISME J. 10, 321–332 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Markle, J. G. et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339, 1084–1088 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Lund, R. J. et al. Genome-wide identification of novel genes involved in early Th1 and Th2 cell differentiation. J. Immunol. 178, 3648–3660 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Greiner, T. U., Hyotylainen, T., Knip, M., Backhed, F. & Oresic, M. The gut microbiota modulates glycaemic control and serum metabolite profiles in non-obese diabetic mice. PLoS ONE 9, e110359 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Chai, G. et al. Trends of outpatient prescription drug utilization in US children, 2002–2010. Pediatrics 130, 23–31 (2012).

    Article  PubMed  Google Scholar 

  25. Hansen, C. H. et al. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia 55, 2285–2294 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Tormo-Badia, N. et al. Antibiotic treatment of pregnant non-obese diabetic mice leads to altered gut microbiota and intestinal immunological changes in the offspring. Scand. J. Immunol. 80, 250–260 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Larsson, E. et al. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88. Gut 61, 1124–1131 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Buckner, J. H. Mechanisms of impaired regulation by CD4+CD25+FOXP3+ regulatory T cells in human autoimmune diseases. Nat. Rev. Immunol. 10, 849–859 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Badami, E. et al. Defective differentiation of regulatory FoxP3+ T cells by small-intestinal dendritic cells in patients with type 1 diabetes. Diabetes 60, 2120–2124 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bedoya, S. K., Lam, B., Lau, K. & Larkin, J. III Th17 cells in immunity and autoimmunity. Clin. Dev. Immunol. 2013, 986789 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Emamaullee, J. A. et al. Inhibition of Th17 cells regulates autoimmune diabetes in NOD mice. Diabetes 58, 1302–1311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kriegel, M. A. et al. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc. Natl Acad. Sci. USA 108, 11548–11553 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lau, K. et al. Inhibition of type 1 diabetes correlated to a Lactobacillus johnsonii N6.2-mediated Th17 bias. J. Immunol. 186, 3538–3546 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Blaschitz, C. & Raffatellu, M. Th17 cytokines and the gut mucosal barrier. J. Clin. Immunol. 30, 196–203 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bosi, E. et al. Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia 49, 2824–2827 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Giongo, A. et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 5, 82–91 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Turroni, F., van Sinderen, D. & Ventura, M. Genomics and ecological overview of the genus Bifidobacterium. Int. J. Food Microbiol. 149, 37–44 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cardwell, C. R. et al. Breast-feeding and childhood-onset type 1 diabetes: a pooled analysis of individual participant data from 43 observational studies. Diabetes Care 35, 2215–2225 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cardwell, C. R. et al. Caesarean section is associated with an increased risk of childhood-onset type 1 diabetes mellitus: a meta-analysis of observational studies. Diabetologia 51, 726–735 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. De Goffau, M. C. et al. Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes 62, 1238–1244 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Salzman, N. H. et al. Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria. Microbiology 148, 3651–3660 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Grapov, D. et al. Diabetes associated metabolomic perturbations in NOD mice. Metabolomics 11, 425–437 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oresic, M. et al. Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. J. Exp. Med. 205, 2975–2984 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Martin, F. P. et al. A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol. Syst. Biol. 3, 112 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Youssef, S. et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 420, 78–84 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Brown, C. T. et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS ONE 6, e25792 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lowell, C. A., Stearman, R. S. & Morrow, J. F. Transcriptional regulation of serum amyloid A gene expression. J. Biol. Chem. 261, 8453–8461 (1986).

    CAS  PubMed  Google Scholar 

  51. Harkness, J. E. & Wagner, J. E. The Biology and Medicine of Rabbits and Rodents (Lea & Febiger, 1989).

    Google Scholar 

  52. Jukes, T. H. The present status and background of antibiotics in the feeding of domestic animals. Ann. NY Acad. Sci. 182, 362–379 (1971).

    Article  CAS  PubMed  Google Scholar 

  53. Lewicki, J. Tylosin: a review of pharmacokinetics, residues in food animals and analytical methods (United Nations Food and Agriculture Organization, 2006); ftp://ftp.fao.org/ag/agn/food/tylosin_2006.pdf

  54. Ize-Ludlow, D. et al. Progressive erosion of β-cell function precedes the onset of hyperglycemia in the NOD mouse model of type 1 diabetes. Diabetes 60, 2086–2091 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Forestier, C. et al. Improved outcomes in NOD mice treated with a novel Th2 cytokine-biasing NKT cell activator. J. Immunol. 178, 1415–1425 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Wilson, J. R. & Koehler, K. J. Testing of equality of vectors of proportions for several cluster samples. Proc. Joint Statist. Assoc. Meet. Surv. Res. Meth. 39, 201–206 (1984).

    Google Scholar 

  57. La Rosa, P. S. et al. Hypothesis testing and power calculations for taxonomic-based human microbiome data. PLoS ONE 7, e52078 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Irizarry, R. A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003).

    Article  PubMed  Google Scholar 

  59. Smyth, G. K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statist. Appl. Genet. Mol. Biol. 3, 1–25 (2004).

    Article  Google Scholar 

  60. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  PubMed  CAS  Google Scholar 

  61. Kramer, A., Green, J., Pollard, J. Jr & Tugendreich, S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30, 523–530 (2014).

    Article  PubMed  CAS  Google Scholar 

  62. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16, 284–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Beckonert, O. et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2, 2692–2703 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Le Gall, G. et al. Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. J. Proteome Res. 10, 4208–4218 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Banerjee, R., Pathmasiri, W., Snyder, R., McRitchie, S. & Sumner, S. Metabolomics of brain and reproductive organs: characterizing the impact of gestational exposure to butylbenzyl phthalate on dams and resultant offspring. Metabolomics 8, 1012–1025 (2012).

    Article  CAS  Google Scholar 

  66. Church, R. J. et al. A systems biology approach utilizing a mouse diversity panel identifies genetic differences influencing isoniazid-induced microvesicular steatosis. Toxicol. Sci. 140, 481–492 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pathmasiri, W. et al. Integrating metabolomic signatures and psychosocial parameters in responsivity to an immersion treatment model for adolescent obesity. Metabolomics 8, 1037–1051 (2012).

    Article  CAS  Google Scholar 

  68. Sumner, S. et al. Metabolomics in the assessment of chemical-induced reproductive and developmental outcomes using non-invasive biological fluids application to the study of butylbenzyl phthalate. J. Appl. Toxicol. 29, 703–714 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sumner, S. C., Fennell, T. R., Snyder, R. W., Taylor, G. F. & Lewin, A. H. Distribution of carbon-14 labeled C60 ([14C]C60) in the pregnant and in the lactating dam and the effect of C60 exposure on the biochemical profile of urine. J. Appl. Toxicol. 30, 354–360 (2010).

    CAS  PubMed  Google Scholar 

  70. Sumner, S. J., Burgess, J. P., Snyder, R. W., Popp, J. A. & Fennell, T. R. Metabolomics of urine for the assessment of microvesicular lipid accumulation in the liver following isoniazid exposure. Metabolomics 6, 238–249 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Aronesty, E. Comparison of sequence utility programs. Open Bioinformatics 7, 1–8 (2013).

    Article  Google Scholar 

  74. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).

    Google Scholar 

  77. McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82, 290–297 (2001).

    Article  Google Scholar 

  78. Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Matsuki, T. et al. Quantitative PCR with 16S rRNA-gene-targeted species specific primers for analysis of human intestinal bifidobacteria. Appl. Environ. Microbiol. 70, 167–173 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Barman, M. et al. Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. Infect. Immun. 76, 907–915 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Breiman, L. Random forests. Machine Learning 45, 5–32 (2001).

    Article  Google Scholar 

  82. Breiman, L. Manual on setting up, using, and understanding random forests v3.1 (2002); https://www.stat.berkeley.edu/~breiman/Using_random_forests_V3.1.pdf

  83. Knights, D., Costello, E. K. & Knight, R. Supervised classification of human microbiota. FEMS Microbiol. Rev. 35, 343–359 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Parks, D. H. & Beiko, R. G. Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26, 715–721 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research support funding was provided by the Juvenile Diabetes Research Foundation, the Diane Belfer Program for Human Microbial Ecology, the Knapp Family, the Ziff Family and C&D Funds (to M.J.B.), the Howard Hughes Medical Institute and the Defendi Fellowship (to A.E.L.). Sequencing was performed at the NYUMC Genome Technology Center, partially supported by a Cancer Center Support Grant (P30CA016087) at the Laura and Isaac Perlmutter Cancer Center. The authors thank T. Battaglia and P. Meyn for informatic and technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

A.E.L. and M.J.B. conceived and designed the study. A.E.L., T.U.G., P.V., W.P., D.S., J.C., J.S., S.K., Z.G., C.B., J.K., S.N., A.R. and X.-S.Z. acquired the data. A.E.L., S.M., H.L., A.B.R., S.S., X.-S.Z., K.C., D.K., A.A., F.B. and M.J.B. analysed and interpreted the data. A.E.L., T.U.G., S.M., H.L., A.B.R., S.S., X.-S.Z., K.C., D.K., A.A., F.B. and M.J.B. drafted or revised the article. A.E.L., T.U.G., P.V., W.P., D.S., S.M., H.L., J.C., J.S., S.K., Z.G., C.B., J.K., S.N., A.B.R., S.S., X.-S.Z., K.C., D.K., A.A., F.B. and M.J.B. approved the final manuscript.

Corresponding author

Correspondence to Martin J. Blaser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary References, Supplementary Figures 1–9, Supplementary Tables 1–7. (PDF 11315 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Livanos, A., Greiner, T., Vangay, P. et al. Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nat Microbiol 1, 16140 (2016). https://doi.org/10.1038/nmicrobiol.2016.140

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.140

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology