Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spirochaete flagella hook proteins self-catalyse a lysinoalanine covalent crosslink for motility

Abstract

Spirochaetes are bacteria responsible for several serious diseases, including Lyme disease (Borrelia burgdorferi), syphilis (Treponema pallidum) and leptospirosis (Leptospira interrogans), and contribute to periodontal diseases (Treponema denticola)1. These spirochaetes employ an unusual form of flagella-based motility necessary for pathogenicity; indeed, spirochaete flagella (periplasmic flagella) reside and rotate within the periplasmic space211. The universal joint or hook that links the rotary motor to the filament is composed of 120–130 FlgE proteins, which in spirochaetes form an unusually stable, high-molecular-weight complex9,1217. In other bacteria, the hook can be readily dissociated by treatments such as heat18. In contrast, spirochaete hooks are resistant to these treatments, and several lines of evidence indicate that the high-molecular-weight complex is the consequence of covalent crosslinking12,13,17. Here, we show that T. denticola FlgE self-catalyses an interpeptide crosslinking reaction between conserved lysine and cysteine, resulting in the formation of an unusual lysinoalanine adduct that polymerizes the hook subunits. Lysinoalanine crosslinks are not needed for flagellar assembly, but they are required for cell motility and hence infection. The self-catalytic nature of FlgE crosslinking has important implications for protein engineering, and its sensitivity to chemical inhibitors provides a new avenue for the development of antimicrobials targeting spirochaetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stability of FlgE high-molecular-weight complexes (HMWCs) derived from periplasmic flagella (PFs), polyhooks (PHs) and rFlgE.
Figure 2: MS analysis of T. denticola and B. burgdorferi HMWCs indicates that the crosslink is lysinoalanine.
Figure 3: Mutagenesis identifies critical residues for crosslinking that are compatible with structural models of the hook.
Figure 4: T. denticola mutants unable to form FlgE crosslinks are deficient in motility but still form intact flagella.

Similar content being viewed by others

References

  1. Paster, B. J. in Bergey's Manuel of Systematic Bacteriology Vol. 4 (eds Krieg, N. R. et al.), 471–566 (Springer, 2011).

    Google Scholar 

  2. Sultan, S. Z. et al. Motility is crucial for the infectious life cycle of Borrelia burgdorferi. Infect. Immun. 81, 2012–2021 (2013).

    Article  CAS  Google Scholar 

  3. Li, C., Xu, H., Zhang, K. & Liang, F. T. Inactivation of a putative flagellar motor switch protein FliG1 prevents Borrelia burgdorferi from swimming in highly viscous media and blocks its infectivity. Mol. Microbiol. 75, 1563–1576 (2010).

    Article  CAS  Google Scholar 

  4. Sze, C. W., Zhang, K., Kariu, T., Pal, U. & Li, C. Borrelia burgdorferi needs chemotaxis to establish infection in mammals and to accomplish its enzootic cycle. Infect. Immun. 80, 2485–2492 (2012).

    Article  CAS  Google Scholar 

  5. Lambert, A. et al. FlaA proteins in Leptospira interrogans are essential for motility and virulence but are not required for formation of the flagellum sheath. Infect. Immun. 80, 2019–2025 (2012).

    Article  CAS  Google Scholar 

  6. Liao, S. et al. Inactivation of the fliY gene encoding a flagellar motor switch protein attenuates mobility and virulence of Leptospira interrogans strain Lai. BMC Microbiol. 9, 253 (2009).

    Article  Google Scholar 

  7. Sultan, S. Z. et al. Motor rotation is essential for the formation of the periplasmic flagellar ribbon, cellular morphology, and Borrelia burgdorferi persistence within Ixodes scapularis tick and murine hosts. Infect. Immun. 83, 1765–1777 (2015).

    Article  CAS  Google Scholar 

  8. Charon, N. W. & Goldstein, S. F. Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Annu. Rev. Genet. 36, 47–73 (2002).

    Article  CAS  Google Scholar 

  9. Charon, N. W. et al. The unique paradigm of spirochete motility. Annu. Rev. Microbiol. 66, 349–370 (2012).

    Article  CAS  Google Scholar 

  10. Wolgemuth, C. W. Flagellar motility of the pathogenic spirochetes. Semin. Cell Dev. Biol. 46, 104–112 (2015).

    Article  CAS  Google Scholar 

  11. Wunder, E. A. et al. A novel flagellar sheath protein, FcpA, determines filament coiling, translational motility and virulence for the Leptospira spirochete. Mol. Microbiol. http://dx.doi.org/10.1111/mmi.13403 (24 May 2016).

  12. Miller, K. A. et al. Initial characterization of the FlgE hook high molecular weight complex of Borrelia burgdorferi. PLoS ONE 9, e98338 (2014).

    Article  Google Scholar 

  13. Limberger, R. J., Slivienski, L. L. & Samsonoff, W. A. Genetic and biochemical analysis of the flagellar hook of Treponema phagedenis. J. Bacteriol. 176, 3631–3637 (1994).

    Article  CAS  Google Scholar 

  14. Limberger, R. J., Slivienski, L. L., Izard, J. & Samsonoff, W. A. Insertional inactivation of Treponema denticola tap1 results in a nonmotile mutant with elongated flagellar hooks. J. Bacteriol. 181, 3743–3750 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chi, B., Limberger, R. J. & Kuramitsu, H. K. Complementation of a Treponema denticola flgE mutant with a novel coumermycin A1-resistant T. denticola shuttle vector system. Infect. Immun. 70, 2233–2237 (2002).

    Article  CAS  Google Scholar 

  16. Limberger, R. J., Slivienski, L. L., El-Afandi, M. C. T. & Dantuono, L. A. Organization, transcription, and expression of the 5' region of the fla operon of Treponema phagedenis and Treponema pallidum. J. Bacteriol. 178, 4628–4634 (1996).

    Article  CAS  Google Scholar 

  17. Sal, M. S. et al. Borrelia burgdorferi uniquely regulates its motility genes and has an intricate flagellar hook-basal body structure. J. Bacteriol. 190, 1912–1921 (2008).

    Article  CAS  Google Scholar 

  18. Jones, C. J., Macnab, R. M., Okino, H. & Aizawa, S. Stoichiometric analysis of the flagellar hook-(basal-body) complex of Salmonella typhimurium. J. Mol. Biol. 212, 377–387 (1990).

    Article  CAS  Google Scholar 

  19. Popa, M. P., McKelvey, T. A., Hempel, J. & Hendrix, R. W. Bacteriophage HK97 structure: wholesale covalent cross-linking between the major head shell subunits. J. Virol. 65, 3227–3237 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Miller, K. A. Characterization of the Unique Flagellar Hook Structure of the Spirochetes Borrelia burgdorferi and Treponema denticola PhD thesis (West Virginia Univ., 2013).

  21. Friedman, M. Chemistry, biochemistry, nutrition, and microbiology of lysinoalanine, lanthionine, and histidinoalanine in food and other proteins. J. Agric. Food Chem. 47, 1295–1319 (1999).

    Article  CAS  Google Scholar 

  22. Fujii, T., Kato, T. & Namba, K. Specific arrangement of alpha-helical coiled coils in the core domain of the bacterial flagellar hook for the universal joint function. Structure 17, 1485–1493 (2009).

    Article  CAS  Google Scholar 

  23. Ruby, J. D. et al. Relationship of Treponema denticola periplasmic flagella to irregular cell morphology. J. Bacteriol. 179, 1628–1635 (1997).

    Article  CAS  Google Scholar 

  24. Li, H., Ruby, J., Charon, N. & Kuramitsu, H. Gene inactivation in the oral spirochete Treponema denticola: construction of a flgE mutant. J. Bacteriol. 178, 3664–3667 (1996).

    Article  CAS  Google Scholar 

  25. Son, K., Guasto, J. S. & Stocker, R. Bacteria can exploit a flagellar buckling instability to change direction. Nature Phys. 9, 494–498 (2013).

    Article  CAS  Google Scholar 

  26. Duda, R. L. et al. Structure and energetics of encapsidated DNA in bacteriophage HK97 studied by scanning calorimetry and cryo-electron microscopy. J. Mol. Biol. 391, 471–483 (2009).

    Article  CAS  Google Scholar 

  27. Baker, E. N., Squire, C. J. & Young, P. G. Self-generated covalent cross-links in the cell-surface adhesins of Gram-positive bacteria. Biochem. Soc. Trans. 43, 787–794 (2015).

    Article  CAS  Google Scholar 

  28. Monroe, A. & Setlow, P. Localization of the transglutaminase cross-linking sites in the Bacillus subtilis spore coat protein GerQ. J. Bacteriol. 188, 7609–7616 (2006).

    Article  CAS  Google Scholar 

  29. Okesli, A., Cooper, L. E., Fogle, E. J. & van der Donk, W. A. Nine post-translational modifications during the biosynthesis of cinnamycin. J. Am. Chem. Soc. 133, 13753–13760 (2011).

    Article  CAS  Google Scholar 

  30. Orth, R., O'Brien-Simpson, N., Dashper, S., Walsh, K. & Reynolds, E. An efficient method for enumerating oral spirochetes using flow cytometry. J. Microbiol. Meth. 80, 123–128 (2010).

    Article  Google Scholar 

  31. Bian, J., Shen, H., Tu, Y., Yu, A. & Li, C. The riboswitch regulates a thiamine pyrophosphate ABC transporter of the oral spirochete Treponema denticola. J. Bacteriol. 193, 3912–3922 (2011).

    Article  CAS  Google Scholar 

  32. McIntosh, L. P. et al. Proton NMR measurements of bacteriophage T4 lysozyme aided by 15N isotopic labeling: structural and dynamic studies of larger proteins. Proc. Natl Acad. Sci. USA 84, 1244–1248 (1987).

    Article  CAS  Google Scholar 

  33. Vonderviszt, F., Zavodszky, P., Ishimura, M., Uedaira, H. & Namba, K. Structural organization and assembly of flagellar hook protein from Salmonella typhimurium. J. Mol. Biol. 251, 520–532 (1995).

    Article  CAS  Google Scholar 

  34. Bian, J., Fenno, J. C. & Li, C. Development of a modified gentamicin resistance cassette for genetic manipulation of the oral spirochete Treponema denticola. Appl. Environ. Microbiol. 78, 2059–2062 (2012).

    Article  CAS  Google Scholar 

  35. Bian, J. & Li, C. Disruption of a type II endonuclease (TDE0911) enables Treponema denticola ATCC 35405 to accept an unmethylated shuttle vector. Appl. Environ. Microbiol. 77, 4573–4578 (2011).

    Article  CAS  Google Scholar 

  36. Goetting-Minesky, M. P. & Fenno, J. C. A simplified erythromycin resistance cassette for Treponema denticola mutagenesis. J. Microbiol. Meth. 83, 66–68 (2010).

    Article  CAS  Google Scholar 

  37. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

  38. Limberger, R. J. & Charon, N. W. Antiserum to the 33,000-dalton periplasmic-flagellum protein of ‘Treponema phagedenis’ reacts with other treponemes and Spirochaeta aurantia. J. Bacteriol. 168, 1030–1032 (1986).

    Article  CAS  Google Scholar 

  39. Bian, J., Liu, X., Cheng, Y. Q. & Li, C. Inactivation of cyclic di-GMP binding protein TDE0214 affects the motility, biofilm formation, and virulence of Treponema denticola. J. Bacteriol. 195, 3897–3905 (2013).

    Article  CAS  Google Scholar 

  40. Gels, http://bio.lonza.com/uploads/tx_mwaxmarketingmaterial/Lonza_BenchGuides_SourceBook_Section_XIII_-_Protein_Separation_in_Agarose_Gels.pdf (2015).

  41. Yang, Y., Thannhauser, T. W., Li, L. & Zhang, S. Development of an integrated approach for evaluation of 2-D gel image analysis: impact of multiple proteins in single spots on comparative proteomics in conventional 2-D gel/MALDI workflow. Electrophoresis 28, 2080–2094 (2007).

    Article  CAS  Google Scholar 

  42. Yang, Y. et al. Evaluation of different multidimensional LC-MS/MS pipelines for isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of potato tubers in response to cold storage. J. Proteome Res. 10, 4647–4660 (2011).

    Article  CAS  Google Scholar 

  43. Hochrainer, K., Racchumi, G., Zhang, S., Iadecola, C. & Anrather, J. Monoubiquitination of nuclear RelA negatively regulates NF-κB activity independent of proteasomal degradation. Cell. Mol. Life Sci. 69, 2057–2073 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by the National Institutes of Health (R01-DE023431, to N.C., M.M. and C.L.), R01 GM064664 (to B.C.), R01-AI087946 (to J.L.) and R01-DE023080 and R01-AI078958 (to C.L). J.L. was also supported by grant AU-1714 from the Welch Foundation. The authors thank B. Bachert, M. Barbier, R. Duda, R. Hendrix, D. McNitt, S. Norris, R. Silversmith and R. Sircar for suggestions, technical assistance and support. The findings and conclusions in this article are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention or the National Institute for Occupational Safety and Health.

Author information

Authors and Affiliations

Authors

Contributions

N.W.C. and M.R.M. designed the project. B.R.C., N.W.C., C.L, J.L. and M.R.M. wrote the manuscript. P.S.C., N.W.C., B.R.C., J.M.H, M.E.J., C.L., J.L., K.A.M. and M.R.M. designed the experiments. J.B., A.C., J.L., K.A.M., M.R.M., M.E.J., M.L. and S.Z. carried out experiments.

Corresponding author

Correspondence to Nyles W. Charon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1–12, Supplementary Tables 1–6, Supplementary Video Legends 1–4 (PDF 3951 kb)

Supplementary Video 1

Cells WT T. denticola in 1% methylcelluose. (MOV 5395 kb)

Supplementary Video 2

Cells of mutant δflgE in 1% methylcellulose. (MOV 12170 kb)

Supplementary Video 3

Cells of substitution mutant TdC178A in 1% methylcellulose. (MOV 5836 kb)

Supplementary Video 4

Cells of substitution mutant TdK169A in 1% methylcellulose. (MOV 7137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, M., Miller, K., Bian, J. et al. Spirochaete flagella hook proteins self-catalyse a lysinoalanine covalent crosslink for motility. Nat Microbiol 1, 16134 (2016). https://doi.org/10.1038/nmicrobiol.2016.134

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.134

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology