Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pseudomonas aeruginosa infection augments inflammation through miR-301b repression of c-Myb-mediated immune activation and infiltration

Abstract

MicroRNAs (miRNAs) play critical roles in various biological processes, including cell proliferation, development and host defence. However, the molecular mechanism for miRNAs in regulating bacterial-induced inflammation remains largely unclear. Here, we report that miR-301b augments pro-inflammatory response during pulmonary infection, and caffeine suppresses the effect of miR-301b and thereby augments respiratory immunity. LPS treatment or Pseudomonas aeruginosa infection induces miR-301b expression via a TLR4/MyD88/NF-κB pathway. Importantly, caffeine decreases miR-301b expression through negative regulation of the cAMP/PKA/NF-κB axis. Further, c-Myb is identified as a target of miR-301b, which positively modulates anti-inflammatory cytokines IL-4 and TGF-β1, but negatively regulates pro-inflammatory cytokines MIP-1α and IL-17A. Moreover, repression of miR-301b results in increased transcription of c-Myb and elevated levels of neutrophil infiltration, thereby alleviating infectious symptoms in mice. These findings reveal miR-301b as a new controller of inflammatory response by repressing c-Myb function to inhibit the anti-inflammatory response to bacterial infection, representing a novel mechanism for balancing inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CAF decreases miR-301b, 301a and 15a expression.
Figure 2: CAF inhibits LPS-induced miR-301b expression by regulating the cAMP/PKA/CREM/NF-κB axis.
Figure 3: Enforced expression of miR-301b suppresses bacterium-induced anti-inflammatory responses in vivo.
Figure 4: c-Myb is a functional target of miR-301b.
Figure 5: c-Myb plays a role in mediating infection-induced inflammatory responses.
Figure 6: CAF and 301b-i decrease susceptibility and mortality after pulmonary bacterial infection.

Similar content being viewed by others

References

  1. Ha, M. & Kim, V. N. Regulation of microRNA biogenesis. Nature Rev. Mol. Cell Biol. 15, 509–524 (2014).

    Article  Google Scholar 

  2. Ovcharenko, D., Kelnar, K., Johnson, C., Leng, N. & Brown, D. Genome-scale microRNA and small interfering RNA screens identify small RNA modulators of TRAIL-induced apoptosis pathway. Cancer Res. 67, 10782–10788 (2007).

    Article  Google Scholar 

  3. Marques-Rocha, J. L. et al. Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J. 29, 3595–3611 (2015).

    Article  Google Scholar 

  4. Xiao, C. et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131, 146–159 (2007).

    Article  Google Scholar 

  5. Zhao, J. L. et al. NF-κB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc. Natl Acad. Sci. USA 108, 9184–9189 (2011).

    Article  Google Scholar 

  6. Taganov, K. D., Boldin, M. P., Chang, K. J. & Baltimore, D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl Acad. Sci. USA 103, 12481–12486 (2006).

    Article  Google Scholar 

  7. Iliopoulos, D., Hirsch, H. A. & Struhl, K. An epigenetic switch involving NF-κB, Lin28, Let-7 microRNA, and IL6 links inflammation to cell transformation. Cell 139, 693–706 (2009).

    Article  Google Scholar 

  8. Wang, P. et al. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J. Immunol. 185, 6226–6233 (2010).

    Article  Google Scholar 

  9. Siddle, K. J. et al. Bacterial infection drives the expression dynamics of microRNAs and their isomiRs. PLoS Genetics 11, e1005064 (2015).

    Article  Google Scholar 

  10. Schwerk, J. & Savan, R. Translating the untranslated region. J. Immunol. 195, 2963–2971 (2015).

    Article  Google Scholar 

  11. Hamza, T. H. et al. Glutamate receptor gene GRIN2A, coffee, and Parkinson disease. PLoS Genetics 10, e1004774 (2014).

    Article  Google Scholar 

  12. Rosendahl, A. H. et al. Caffeine and caffeic acid inhibit growth and modify estrogen receptor and insulin-like growth factor I receptor levels in human breast cancer. Clin. Cancer Res. 21, 1877–1887 (2015).

    Article  Google Scholar 

  13. Schmidt, B. et al. Caffeine therapy for apnea of prematurity. New Engl. J. Med. 354, 2112–2121 (2006).

    Article  Google Scholar 

  14. Spaeth, A. M., Goel, N. & Dinges, D. F. Cumulative neurobehavioral and physiological effects of chronic caffeine intake: individual differences and implications for the use of caffeinated energy products. Nutrition Rev. 72(Suppl. 1), 34–47 (2014).

    Article  Google Scholar 

  15. Lu, G. et al. Inhibition of adenoma progression to adenocarcinoma in a 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis model in A/J mice by tea polyphenols and caffeine. Cancer Res. 66, 11494–11501 (2006).

    Article  Google Scholar 

  16. Horrigan, L. A., Kelly, J. P. & Connor, T. J. Caffeine suppresses TNF-α production via activation of the cyclic AMP/protein kinase A pathway. Int. Immunopharmacol. 4, 1409–1417 (2004).

    Article  Google Scholar 

  17. Lou, Y. et al. Oral caffeine during voluntary exercise markedly inhibits skin carcinogenesis and decreases inflammatory cytokines in UVB-treated mice. Nutr. Cancer 65, 1002–1013 (2013).

    Article  Google Scholar 

  18. Pisano, F. et al. Combination of miRNA499 and miRNA133 exerts a synergic effect on cardiac differentiation. Stem Cells 33, 1187–1199 (2015).

    Article  Google Scholar 

  19. Tritsch, E. et al. An SRF/miR-1 axis regulates NCX1 and annexin A5 protein levels in the normal and failing heart. Cardiovasc. Res. 98, 372–380 (2013).

    Article  Google Scholar 

  20. Zhou, X. et al. MicroRNA-302b augments host defense to bacteria by regulating inflammatory responses via feedback to TLR/IRAK4 circuits. Nature Commun. 5, 3619 (2014).

    Article  Google Scholar 

  21. Grailer, J. J., Kalbitz, M., Zetoune, F. S. & Ward, P. A. Persistent neutrophil dysfunction and suppression of acute lung injury in mice following cecal ligation and puncture sepsis. J. Innate Immun. 6, 695–705 (2014).

    Article  Google Scholar 

  22. Nouailles, G. et al. CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic inflammation in tuberculosis. J. Clin. Invest. 124, 1268–1282 (2014).

    Article  Google Scholar 

  23. Perl, M. et al. Role of activated neutrophils in chest trauma-induced septic acute lung injury. Shock 38, 98–106 (2012).

    Article  Google Scholar 

  24. Lefkimmiatis, K., Leronni, D. & Hofer, A. M. The inner and outer compartments of mitochondria are sites of distinct cAMP/PKA signaling dynamics. J. Cell Biol. 202, 453–462 (2013).

    Article  Google Scholar 

  25. Aandahl, E. M. et al. Inhibition of antigen-specific T cell proliferation and cytokine production by protein kinase A type I. J. Immunol. 169, 802–808 (2002).

    Article  Google Scholar 

  26. Ollivier, V., Parry, G. C., Cobb, R. R., de Prost, D. & Mackman, N. Elevated cyclic AMP inhibits NF-κB-mediated transcription in human monocytic cells and endothelial cells. J. Biol. Chem. 271, 20828–20835 (1996).

    Article  Google Scholar 

  27. Betel, D., Koppal, A., Agius, P., Sander, C. & Leslie, C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 11, R90 (2010).

    Article  Google Scholar 

  28. Lim, M. X. et al. Differential regulation of proinflammatory cytokine expression by mitogen-activated protein kinases in macrophages in response to intestinal parasite infection. Infect. Immun. 82, 4789–4801 (2014).

    Article  Google Scholar 

  29. Yoong, P. & Pier, G. B. Immune-activating properties of Panton–Valentine leukocidin improve the outcome in a model of methicillin-resistant Staphylococcus aureus pneumonia. Infect. Immun. 80, 2894–2904 (2012).

    Article  Google Scholar 

  30. Funamizu, N. et al. MicroRNA-301b promotes cell invasiveness through targeting TP63 in pancreatic carcinoma cells. Int. J. Oncol. 44, 725–734 (2014).

    Article  Google Scholar 

  31. Shaked, I. et al. MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity 31, 965–973 (2009).

    Article  Google Scholar 

  32. Rodriguez, A. et al. Requirement of bic/microRNA-155 for normal immune function. Science 316, 608–611 (2007).

    Article  Google Scholar 

  33. Lu, L. F. et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell 142, 914–929 (2010).

    Article  Google Scholar 

  34. Lagos, D. et al. miR-132 regulates antiviral innate immunity through suppression of the p300 transcriptional co-activator. Nature Cell Biol. 12, 513–519 (2010).

    Article  Google Scholar 

  35. Wang, Y. X. et al. Initial study of microRNA expression profiles of colonic cancer without lymph node metastasis. J. Digest. Dis. 11, 50–54 (2010).

    Article  Google Scholar 

  36. Reid, J. F. et al. miRNA profiling in colorectal cancer highlights miR-1 involvement in MET-dependent proliferation. Mol. Cancer Res. 10, 504–515 (2012).

    Article  Google Scholar 

  37. Thompson, C. B., Challoner, P. B., Neiman, P. E. & Groudine, M. Expression of the c-myb proto-oncogene during cellular proliferation. Nature 319, 374–380 (1986).

    Article  Google Scholar 

  38. Mucenski, M. L. et al. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 65, 677–689 (1991).

    Article  Google Scholar 

  39. Wang, W. et al. c-MYB regulates cell growth and DNA damage repair through modulating MiR-143. FEBS Lett. 589, 555–564 (2015).

    Article  Google Scholar 

  40. Banchereau, J., Pascual, V. & O'Garra, A. From IL-2 to IL-37: the expanding spectrum of anti-inflammatory cytokines. Nature Immunol. 13, 925–931 (2012).

    Article  Google Scholar 

  41. Diaz, M. F. et al. Biomechanical forces promote blood development through prostaglandin E2 and the cAMP-PKA signaling axis. J. Exp. Med. 212, 665–680 (2015).

    Article  Google Scholar 

  42. Zhou, X. et al. Deletion of PIK3C3/Vps34 in sensory neurons causes rapid neurodegeneration by disrupting the endosomal but not the autophagic pathway. Proc. Natl Acad. Sci. USA 107, 9424–9429 (2010).

    Article  Google Scholar 

  43. Priebe, G. P. et al. Construction and characterization of a live, attenuated aroA deletion mutant of Pseudomonas aeruginosa as a candidate intranasal vaccine. Infect. Immun. 70, 1507–1517 (2002).

    Article  Google Scholar 

  44. Li, X. et al. Lyn delivers bacteria to lysosomes for eradication through TLR2-initiated autophagy related phagocytosis. PLoS Pathogens 12, e1005363 (2016).

    Article  Google Scholar 

  45. Kim, S. W. et al. A sensitive non-radioactive northern blot method to detect small RNAs. Nucleic Acids Res. 38, e98 (2010).

    Article  Google Scholar 

  46. Wu, M., Pasula, R., Smith, P. A. & Martin, W. J. II Mapping alveolar binding sites in vivo using phage peptide libraries. Gene Therapy 10, 1429–1436 (2003).

    Article  Google Scholar 

  47. Zhang, D., Wu, M., Nelson, D. E., Pasula, R. & Martin, W. J. II Alpha-1-antitrypsin expression in the lung is increased by airway delivery of gene-transfected macrophages. Gene Therapy 10, 2148–2152 (2003).

    Article  Google Scholar 

  48. Wisniowski, P. E. et al. Vitronectin protects alveolar macrophages from silica toxicity. Am. J. Respir. Crit. Care Med. 162, 733–739 (2000).

    Article  Google Scholar 

  49. Li, X., Ye, Y., Zhou, X., Huang, C. & Wu, M. Atg7 enhances host defense against infection via downregulation of superoxide but upregulation of nitric oxide. J. Immunol. 194, 1112–1121 (2015).

    Article  Google Scholar 

  50. Wu, M. et al. Host DNA repair proteins in response to P. aeruginosa in lung epithelial cells and in mice. Infect. Immun. 79, 75–87 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (AI109317-01A1 and AI101973-01) to M.W., and by grants from the National 973 Basic Research Program of China (2013CB911300), the Chinese NSFC (81225015 and 81430071) and Sichuan Science–Technology Innovative Research Team for Young Scientist (2013TD0001) to C.H. The authors thank S. Abrahamson of the UND imaging core for help with confocal imaging.

Author information

Authors and Affiliations

Authors

Contributions

X.L., S.H., C.H. and M.W conceived and designed the experiments. X.L., S.H., R.L. and X.Z. performed the experiments. X.L., S.H., R.L., X.Z., S.Z., M.Y., Y.Y. and Y.W. analysed the data. C.H. and M.W. contributed reagents, materials and analysis tools. X.L., S.H., C.H. and M.W. wrote the manuscript.

Corresponding authors

Correspondence to Canhua Huang or Min Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures 1-13, Suppelementary Tables 1-3 (PDF 2043 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., He, S., Li, R. et al. Pseudomonas aeruginosa infection augments inflammation through miR-301b repression of c-Myb-mediated immune activation and infiltration. Nat Microbiol 1, 16132 (2016). https://doi.org/10.1038/nmicrobiol.2016.132

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.132

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology