Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Probing the metabolic heterogeneity of live Euglena gracilis with stimulated Raman scattering microscopy

Abstract

Understanding metabolism in live microalgae is crucial for efficient biomaterial engineering, but conventional methods fail to evaluate heterogeneous populations of motile microalgae due to the labelling requirements and limited imaging speeds. Here, we demonstrate label-free video-rate metabolite imaging of live Euglena gracilis and statistical analysis of intracellular metabolite distributions under different culture conditions. Our approach provides further insights into understanding microalgal heterogeneity, optimizing culture methods and screening mutant microalgae.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Label-free video-rate metabolite imaging of E. gracilis with a stimulated Raman scattering (SRS) microscope.
Figure 2: Statistical analysis of live E. gracilis cells under different culture conditions.

References

  1. 1

    Georgianna, D. R. & Mayfield, S. P. Nature 488, 329–335 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Wijffels, R. H. & Barbosa, M. J.  Science 329, 796–799 (2010).

    CAS  PubMed  Google Scholar 

  3. 3

    Harun, R. et al. Renew. Sustain. Energy Rev. 14, 1037–1047 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Buetow, D. E. The Biology of Euglena Vol. 9, Ch. 1 (Academic, 1989).

    Google Scholar 

  5. 5

    Koizumi, N. et al. Antiviral Res. 21, 1–14 (1993).

    CAS  Article  Google Scholar 

  6. 6

    Watanabe, T. et al. Food Funct. 4, 1685–1690 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Demirbas, A. & Demirbas, M. F. Energ. Convers. Manage. 52, 163–170 (2011).

    Article  Google Scholar 

  8. 8

    Altschuler, S. J. & Wu, L. F. Cell 141, 559–563 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Lisec, J. et al. Nature Protoc. 1, 387–396 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Graham, M. D. J. Lab. Autom. 8, 72–81 (2003).

    Article  Google Scholar 

  11. 11

    Bonner, W. A. et al. Rev. Sci. Instrum. 43, 404–409 (1972).

    CAS  Article  Google Scholar 

  12. 12

    Lichtman, J. W. & Conchello, J.-A. Nature Methods 2, 910–919 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Lakowicz, J. R. Principles of Fluorescence Spectroscopy (Springer, 2006).

  14. 14

    Freudiger, C. W. et al. Science 322, 1857–1861 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Cheng, J.-X. & Xie, X. S. Science 350, aaa8870 (2015).

    Article  Google Scholar 

  16. 16

    Ozeki, Y. et al. Nature Photon. 6, 845–851 (2012).

    CAS  Article  Google Scholar 

  17. 17

    Littlejohn, G. R. et al. Plant Physiol. 168, 18–28 (2015).

    CAS  Article  Google Scholar 

  18. 18

    He, X. N. et al. Biomed. Opt. Express 3, 2896–2906 (2012).

    CAS  Article  Google Scholar 

  19. 19

    Cavonius, L. et al. Plant Physiol. 167, 603–616 (2015).

    CAS  Article  Google Scholar 

  20. 20

    Coleman, L. W. et al. Plant. Cell Physiol. 29, 423–432 (1988).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded mainly by the ImPACT Program of the Council for Science, Technology and Innovation (Cabinet Office, Government of Japan) and partly by Advanced Photon Science Alliance and the Japan Society for the Promotion of Science (JSPS) KAKENHI (grant no. 25702026). Y.S. and K.G. are supported by JSPS and partly by Burroughs Wellcome Fund, respectively.

Author information

Affiliations

Authors

Contributions

Y.W. and Y.S. performed the experiments. O.I., A.N. and T.I. prepared the samples. Y.W., Y.S., M.H., R.D., M.S., N.T., T.S. and H.W. performed the data analysis. Y.W., Y.S., K.G. and Y.O. wrote the manuscript. K.G. conceived the concept. K.S., K.G. and Y.O. supervised the work.

Corresponding authors

Correspondence to Keisuke Goda or Yasuyuki Ozeki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Discussion, Supplementary References, Supplementary Figures 1–8, Legends for Supplementary Videos 1 and 2. (PDF 1993 kb)

Supplementary Video 1

Comparison in SRS imaging of motile E. gracilis in motion between frame rates of 27 fps (top) and 6.75 fps (bottom). (AVI 3246 kb)

Supplementary Video 1

3D metabolite imaging of E. gracilis. (MOV 2134 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wakisaka, Y., Suzuki, Y., Iwata, O. et al. Probing the metabolic heterogeneity of live Euglena gracilis with stimulated Raman scattering microscopy. Nat Microbiol 1, 16124 (2016). https://doi.org/10.1038/nmicrobiol.2016.124

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing