Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Local and global consequences of flow on bacterial quorum sensing

Abstract

Bacteria use a chemical communication process called quorum sensing (QS) to control collective behaviours such as pathogenesis and biofilm formation1,2. QS relies on the production, release and group-wide detection of signal molecules called autoinducers. To date, studies of bacterial pathogenesis in well-mixed cultures have revealed virulence factors and the regulatory circuits controlling them, including the overarching role of QS3. Although flow is ubiquitous to nearly all living systems4, much less explored is how QS influences pathogenic traits in scenarios that mimic host environments, for example, under fluid flow and in complex geometries. Previous studies57 have shown that sufficiently strong flow represses QS. Nonetheless, it is not known how QS functions under constant or intermittent flow, how it varies within biofilms or as a function of position along a confined flow, or how surface topography (grooves, crevices, pores) influence QS-mediated communication. We explore these questions using two common pathogens, Staphylococcus aureus and Vibrio cholerae. We identify conditions where flow represses QS and other conditions where QS is activated despite flow, including characterizing geometric and topographic features that influence the QS response. Our studies highlight that, under flow, genetically identical cells do not exhibit phenotypic uniformity with respect to QS in space and time, leading to complex patterns of pathogenesis and colonization. Understanding the ramifications of spatially and temporally non-uniform QS responses in realistic environments will be crucial for successful deployment of synthetic pro- and anti-QS strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fluid flows locally repress QS by advecting signalling molecules.
Figure 2: Forming a thick biofilm promotes QS under flow.
Figure 3: Flows assist long-distance QS by enhancing autoinducer accumulation.
Figure 4: QS is activated inside crevices.

Similar content being viewed by others

References

  1. Bassler, B. L. & Losick, R. Bacterially speaking. Cell 125, 237–246 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Novick, R. P. & Geisinger, E. Quorum sensing in staphylococci. Annu. Rev. Gen. 42, 541–564 (2008).

    Article  CAS  Google Scholar 

  3. Arvidson, S. & Tegmark, K. Regulation of virulence determinants in Staphylococcus aureus. Int. J. Med. Microbiol. 291, 159–170 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Persat, A. et al. The mechanical world of bacteria. Cell 161, 988–997 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Purevdorj, B., Costerton, J. W. & Stoodley, P. Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 68, 4457–4464 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kirisits, M. J. et al. Influence of the hydrodynamic environment on quorum sensing in Pseudomonas aeruginosa biofilms. J. Bacteriol. 189, 8357–8360 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Meyer, A. et al. Dynamics of AHL mediated quorum sensing under flow and non-flow conditions. Phys. Biol. 9, 026007 (2012).

    Article  PubMed  Google Scholar 

  8. Rusconi, R., Garren, M. & Stocker, R. Microfluidics expanding the frontiers of microbial ecology. Annu. Rev. Biophys. 43, 65–91 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fine, K. D., Santaana, C. A., Porter, J. L. & Fordtran, J. S. Effect of changing intestinal flow rate on a measurement of intestinal permeability. Gastroenterology 108, 983–989 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Lipowsky, H. H., Kovalcheck, S. & Zweifach, B. W. Distribution of blood rheological parameters in microvasculature of cat mesentery. Circ. Res. 43, 738–749 (1978).

    Article  CAS  PubMed  Google Scholar 

  11. Liese, J., Rooijakkers, S. H. M., van Strijp, J. A. G., Novick, R. P. & Dustin, M. L. Intravital two-photon microscopy of host–pathogen interactions in a mouse model of Staphylococcus aureus skin abscess formation. Cell. Microbiol. 15, 891–909 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Cheung, A. L., Nishina, K. & Manna, A. C. SarA of Staphylococcus aureus binds to the sarA promoter to regulate gene expression. J. Bacteriol. 190, 2239–2243 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stewart, P. S. Mini-review: convection around biofilms. Biofouling 28, 187–198 (2012).

    Article  PubMed  Google Scholar 

  14. Weaver, W. M., Milisavljevic, V., Miller, J. F. & Di Carlo, D. Fluid flow induces biofilm formation in Staphylococcus epidermidis polysaccharide intracellular adhesin-positive clinical isolates. Appl. Environ. Microbiol. 78, 5890–5896 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim, M. K., Drescher, K., Pak, O. S., Bassler, B. L. & Stone, H. A. Filaments in curved streamlines: rapid formation of Staphylococcus aureus biofilm streamers. New J. Phys. 16, 065024 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Drescher, K., Shen, Y., Bassler, B. L. & Stone, H. A. Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems. Proc. Natl Acad. Sci. USA 110, 4345–4350 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Drescher, K., Nadell, C. D., Stone, H. A., Wingreen, N. S. & Bassler, B. L. Solutions to the public goods dilemma in bacterial biofilms. Curr. Biol. 24, 50–55 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Horswill, A. R., Stoodley, P., Stewart, P. S. & Parsek, M. R. The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities. Anal. Bioanal. Chem. 387, 371–380 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Stoodley, P., Debeer, D. & Lewandowski, Z. Liquid flow in biofilm systems. Appl. Environ. Microbiol. 60, 2711–2716 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Boles, B. R. & Horswill, A. R. agr-Mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathogens 4, e1000052 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Periasamy, S. et al. How Staphylococcus aureus biofilms develop their characteristic structure. Proc. Natl Acad. Sci. USA 109, 1281–1286 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Yarwood, J. M., Bartels, D. J., Volper, E. M. & Greenberg, E. P. Quorum sensing in Staphylococcus aureus biofilms. J. Bacteriol. 186, 1838–1850 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Parsek, M. R. & Greenberg, E. P. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 13, 27–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Siryaporn, A., Kim, M. K., Shen, Y., Stone, H. A. & Gitai, Z. Colonization, competition, and dispersal of pathogens in fluid flow networks. Curr. Biol. 25, 1201–1207 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Acton, D. S., Plat-Sinnige, M. J. T., van Wamel, W., de Groot, N. & van Belkum, A. Intestinal carriage of Staphylococcus aureus: how does its frequency compare with that of nasal carriage and what is its clinical impact? Eur. J. Clin. Microbiol. Infect. Dis. 28, 115–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Pan, F. & Acrivos, A. Steady flows in rectangular cavities. J. Fluid Mech. 28, 643–655 (1967).

    Article  Google Scholar 

  27. Benjamin, M. A., Lu, J., Donnelly, G., Dureja, P. & McKay, D. M. Changes in murine jejunal morphology evoked by the bacterial superantigen Staphylococcus aureus enterotoxin B are mediated by CD4+ T cells. Infect. Immun. 66, 2193–2199 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Millet, Y. A. et al. Insights into Vibrio cholerae intestinal colonization from monitoring fluorescently labeled bacteria. PLoS Pathogens 10, e1004405 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhao, X. A., Koestler, B. J., Waters, C. M. & Hammer, B. K. Post-transcriptional activation of a diguanylate cyclase by quorum sensing small RNAs promotes biofilm formation in Vibrio cholerae. Mol. Microbiol. 89, 989–1002 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. George, E. A., Novick, R. P. & Muir, T. W. Cyclic peptide inhibitors of staphylococcal virulence prepared by Fmoc-based thiolactone peptide synthesis. J. Am. Chem. Soc. 130, 4914–4924 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Nadell, C. D. & Bassler, B. L. A fitness trade-off between local competition and dispersal in Vibrio cholerae biofilms. Proc. Natl Acad. Sci. USA 108, 14181–14185 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Bryksin, A. V. & Matsumura, I. Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids. Biotechniques 48, 463–465 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Malone, C. L. et al. Fluorescent reporters for Staphylococcus aureus. J. Microbiol. Methods 77, 251–260 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods 6, 343–U41 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Novick, R. P. Genetic systems in Staphylococci. Methods Enzymol. 204, 587–636 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Novick Laboratory for providing S. aureus strains and the pJL-agr-GFP plasmid. The authors thank B. Wang, J. Chen, K. Papenfort and J. Yan for technical advice and discussions, and K. Drescher for discussions and for providing strain KDV028. The authors thank A. Ismail for providing the image that appears in Fig. 4a,i and W. Lee for the image in Fig. 4a,ii. The authors thank members of the B.L.B. and H.A.S. laboratories for suggestions. This work was supported by National Science Foundation grants MCB-1119232 (B.L.B. and H.A.S.) and MCB-1344191 (B.L.B. and H.A.S), the Howard Hughes Medical Institute (B.L.B.), National Institutes of Health grant R01GM065859 (B.L.B.) and an STX fellowship (M.K.K.).

Author information

Authors and Affiliations

Authors

Contributions

M.K.K., F.I., B.L.B. and H.A.S. designed the experiments. M.K.K. and F.I. performed the experiments. A.Z. synthesized the AIP. F.I. constructed the quantitative model and H.A.S. revised it. M.K.K., F.I., B.L.B. and H.A.S. analysed the data and wrote the manuscript. All authors discussed and approved the results.

Corresponding authors

Correspondence to Bonnie L. Bassler or Howard A. Stone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–8, Tables 1–3, Equations, Methods and References. (PDF 2444 kb)

Supplementary Video 1

Fluid flows locally repress QS by advecting signalling molecules. Time series of merged fluorescence images of S. aureus under no flow and flow conditions for 12 h after inoculation (see Fig. 1b for details). The time interval between each image is 10 min. (AVI 5172 kb)

Supplementary Video 2

Forming a thick biofilm promotes QS under flow. Series of merged fluorescence images of S. aureus biofilms for the xy planes as a function of z-axis. The same biofilm region is taken under flow for 13 h after inoculation (left) and following 13 h of flow and 3 h of no flow (right). The interval between each frame is 3 µm in z-axis. (AVI 1639 kb)

Supplementary Video 3

Flows assist long-distance QS by enhancing autoinducer accumulation. Time series of merged images of S. aureus under a constant flow at different downstream locations along a microfluidic channel (Q[fluid] = 0.5 µl per min): from left to right in the video, indicating 50 mm, 240 mm, 280 mm and 300 mm from the inlet, respectively. The time interval between each image is 20 min. (AVI 3022 kb)

Supplementary Video 4

QS is activated inside crevices. Time series of merged fluorescence images of S. aureus in a complex topography. The time interval between each image is 10 min (AVI 5327 kb)

Supplementary Video 5

QS dynamics of S. aureus MRSA in a complex topography with continuous injection of 1 µM antagonist (AIP-II). Time series of merged fluorescence images of S. aureus MRSA inside of crevices in the absence of antagonist (right) and when 1 µM antagonist (AIP-II; left) was continuously flowed into the channel beginning 16 h after inoculation. The time interval between each image is 20 min. (AVI 4509 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Ingremeau, F., Zhao, A. et al. Local and global consequences of flow on bacterial quorum sensing. Nat Microbiol 1, 15005 (2016). https://doi.org/10.1038/nmicrobiol.2015.5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2015.5

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology