Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Speciation driven by hybridization and chromosomal plasticity in a wild yeast


Hybridization is recognized as a powerful mechanism of speciation and a driving force in generating biodiversity. However, only few multicellular species, limited to a handful of plants and animals, have been shown to fulfil all the criteria of homoploid hybrid speciation. This lack of evidence could lead to the interpretation that speciation by hybridization has a limited role in eukaryotes, particularly in single-celled organisms. Laboratory experiments have revealed that fungi such as budding yeasts can rapidly develop reproductive isolation and novel phenotypes through hybridization, showing that in principle homoploid speciation could occur in nature. Here, we report a case of homoploid hybrid speciation in natural populations of the budding yeast Saccharomyces paradoxus inhabiting the North American forests. We show that the rapid evolution of chromosome architecture and an ecological context that led to secondary contact between nascent species drove the formation of an incipient hybrid species with a potentially unique ecological niche.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A cryptic S. paradoxus lineage revealed by a population structure and a distinct ecological niche from its sympatric close lineages.
Figure 2: The SpC* lineage is an incipient species, as revealed by its reduced reproductive success with its sister lineages.
Figure 3: The SpC* lineage is a mosaic of SpC and SpB genomes and results from past hybridization.
Figure 4: Chromosomal rearrangements and introgressed regions unevenly segregate in the SpC* × SpC hybrid progeny.
Figure 5: Chromosomal rearrangements and introgressed regions contribute to the decreasing viability of SpC*×SpC hybrid progeny.
Figure 6: A biogeographic scenario for the emergence of S. paradoxus lineages in North America.


  1. 1

    Barton, N. H. & Hewitt, G. Analysis of hybrid zones. Annu. Rev. Ecol. Syst. 16, 113–148 (1985).

  2. 2

    Rieseberg, L. H., Van Fossen, C. & Desrochers, A. M. Hybrid speciation accompanied by genomic reorganization in wild sunflowers. Nature 375, 313–316 (1995).

    CAS  Article  Google Scholar 

  3. 3

    The Heliconius Genome Consortium. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487, 94–98 (2012).

    Article  PubMed Central  Google Scholar 

  4. 4

    Lukhtanov, V. A., Shapoval, N. A., Anokhin, B. A., Saifitdinova, A. F. & Kuznetsova, V. G. Homoploid hybrid speciation and genome evolution via chromosome sorting. Proc. R. Soc. Lond. B 282, 20150157 (2015).

    Article  Google Scholar 

  5. 5

    Schumer, M., Rosenthal, G. G. & Andolfatto, P. How common is homoploid hybrid speciation? Evolution 68, 1553–1560 (2014).

    Article  PubMed  Google Scholar 

  6. 6

    Greig, D., Louis, E. J., Borts, R. H. & Travisano, M. Hybrid speciation in experimental populations of yeast. Science 298, 1773–1775 (2002).

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Charron, G., Leducq, J. B., Bertin, C., Dube, A. K. & Landry, C. R. Exploring the northern limit of the distribution of Saccharomyces cerevisiae and Saccharomyces paradoxus in North America. FEMS Yeast Res. 14, 281–288 (2014).

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Hyma, K. E. & Fay, J. C. Mixing of vineyard and oak-tree ecotypes of Saccharomyces cerevisiae in North American vineyards. Mol. Ecol. 22, 2917–2930 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9

    Maganti, H., Bartfai, D. & Xu, J. Ecological structuring of yeasts associated with trees around Hamilton, Ontario, Canada. FEMS Yeast Res. 12, 9–19 (2012).

    CAS  Article  PubMed  Google Scholar 

  10. 10

    Sniegowski, P. D., Dombrowski, P. G. & Fingerman, E. Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics. FEMS Yeast Res. 1, 299–306 (2002).

    CAS  PubMed  Google Scholar 

  11. 11

    Boynton, P. J. & Greig, D. The ecology and evolution of non-domesticated Saccharomyces species. Yeast 31, 449–462 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Liti, G. et al. Population genomics of domestic and wild yeasts. Nature 458, 337–341 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Bergstrom, A. et al. A high-definition view of functional genetic variation from natural yeast genomes. Mol. Biol. Evol. 31, 872–888 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Koufopanou, V., Hughes, J., Bell, G. & Burt, A. The spatial scale of genetic differentiation in a model organism: the wild yeast Saccharomyces paradoxus. Phil. Trans. R. Soc. Lond. B 361, 1941–1946 (2006).

    Article  Google Scholar 

  15. 15

    Kuehne, H. A., Murphy, H. A., Francis, C. A. & Sniegowski, P. D. Allopatric divergence, secondary contact, and genetic isolation in wild yeast populations. Curr. Biol. 17, 407–411 (2007).

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Leducq, J. B. et al. Local climatic adaptation in a widespread microorganism. Proc. R. Soc. B. Biol. Sci. 281, 20132472 (2014).

    Article  Google Scholar 

  17. 17

    Charron, G., Leducq, J. B. & Landry, C. R. Chromosomal variation segregates within incipient species and correlates with reproductive isolation. Mol. Ecol. 23, 4362–4372 (2014).

    Article  PubMed  Google Scholar 

  18. 18

    Ellison, C. E. et al. Population genomics and local adaptation in wild isolates of a model microbial eukaryote. Proc. Natl Acad. Sci. USA 108, 2831–2836 (2011).

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Sylvester, K. et al. Temperature and host preferences drive the diversification of Saccharomyces and other yeasts: a survey and the discovery of eight new yeast species. FEMS Yeast Res. 15 (2015).

  20. 20

    Samani, P. et al. Metabolic variation in natural populations of wild yeast. Ecol. Evol. 5, 722–732 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Filteau, M., Lagace, L., LaPointe, G. & Roy, D. Correlation of maple sap composition with bacterial and fungal communities determined by multiplex automated ribosomal intergenic spacer analysis (MARISA). Food Microbiol. 28, 980–989 (2011).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Karley, A., Douglas, A. & Parker, W. Amino acid composition and nutritional quality of potato leaf phloem sap for aphids. J. Exp. Biol. 205, 3009–3018 (2002).

    CAS  PubMed  Google Scholar 

  23. 23

    Finlay, B. J. Global dispersal of free-living microbial eukaryote species. Science 296, 1061–1063 (2002).

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Liti, G., Barton, D. B. & Louis, E. J. Sequence diversity, reproductive isolation and species concepts in Saccharomyces. Genetics 174, 839–850 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Neafsey, D. E. et al. Population genomic sequencing of Coccidioides fungi reveals recent hybridization and transposon control. Genome Res. 20, 938–946 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Walsh, J. B. Rate of accumulation of reproductive isolation by chromosome rearrangements. Am. Nat. 120, 510–532 (1982).

    Article  Google Scholar 

  27. 27

    Loidl, J., Jin, Q.-W. & Jantsch, M. Meiotic pairing and segregation of translocation quadrivalents in yeast. Chromosoma 107, 247–254 (1998).

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Zhang, H., Skelton, A., Gardner, R. C. & Goddard, M. R. Saccharomyces paradoxus and Saccharomyces cerevisiae reside on oak trees in New Zealand: evidence for migration from Europe and interspecies hybrids. FEMS Yeast Res. 10, 941–947 (2010).

    CAS  Article  PubMed  Google Scholar 

  29. 29

    Hewitt, G. M. Hybrid zones—natural laboratories for evolutionary studies. Trends Ecol. Evol. 3, 158–167 (1988).

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Hou, J., Friedrich, A., Gounot, J. S. & Schacherer, J. Comprehensive survey of condition-specific reproductive isolation reveals genetic incompatibility in yeast. Nature Commun. 6, 7214 (2015).

    Article  Google Scholar 

  31. 31

    Huerta-Sanchez, E. et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512, 194–197 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Magwene, P. M. et al. Outcrossing, mitotic recombination, and life-history trade-offs shape genome evolution in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 108, 1987–1992 (2011).

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Dunn, B. et al. Recurrent rearrangement during adaptive evolution in an interspecific yeast hybrid suggests a model for rapid introgression. PLoS Genet. 9, e1003366 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34

    Libkind, D. et al. Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc. Natl Acad. Sci. USA 108, 14539–14544 (2011).

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Wang, Q. M., Liu, W. Q., Liti, G., Wang, S. A. & Bai, F. Y. Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity. Mol. Ecol. 21, 5404–5417 (2012).

    Article  PubMed  Google Scholar 

  36. 36

    Keller, I. & Seehausen, O. Thermal adaptation and ecological speciation. Mol. Ecol. 21, 782–799 (2012).

    CAS  Article  PubMed  Google Scholar 

  37. 37

    Ordonez, A. & Williams, J. W. Climatic and biotic velocities for woody taxa distributions over the last 16 000 years in eastern North America. Ecol. Lett. 16, 773–781 (2013).

    Article  PubMed  Google Scholar 

  38. 38

    Scannell, D. R. et al. The awesome power of yeast evolutionary genetics: new genome sequences and strain resources for the Saccharomyces sensu stricto genus. Genes Genom. Genet. 1, 11–25 (2011).

    CAS  Google Scholar 

  39. 39

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nature Methods 9, 357–359 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40

    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41

    Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. Preprint at (2012).

  42. 42

    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43

    Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Rochette, S. et al. Genome-wide protein–protein interaction screening by protein-fragment complementation assay (PCA) in living cells. J. Visual. Exp., e52255 (2015).

  45. 45

    Diss, G., Dube, A. K., Boutin, J., Gagnon-Arsenault, I. & Landry, C. R. A systematic approach for the genetic dissection of protein complexes in living cells. Cell Rep. 3, 2155–2167 (2013).

    CAS  Article  PubMed  Google Scholar 

  46. 46

    Goudet, J. HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).

    Article  Google Scholar 

  47. 47

    Simpson, J. T. et al. ABySS: a parallel assembler for short read sequence data. Genome Res. 19, 1117–1123 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48

    Darling, A. C., Mau, B., Blattner, F. R. & Perna, N. T. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394–1403 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

Download references


The authors thank A. K. Dubé, K. Lambert, R. Nuwal, S. Haughian, A.-E. Chrétien, M. Caouette, I. Kukavica-Ibrulj, R. Levesque and the IBIS sequencing platform (B. Boyle) for technical help, P. Sniegowski, M.-A. Lachance and J. Anderson for providing strains, I. Levade and C. Lemieux for discussions and N. Aubin-Horth, A. Moses, L. Bernatchez, J. Shapiro, S. Pavey, F. Rousseau-Brochu, I. Gagnon-Arsenault, A.K. Dubé, A.-M. Dion-Côté, H. Vignaud and M. Nigg for comments on the manuscript. Funding support was provided by a NSERC Discovery Grant and an HFSP grant (RGY0073/2010) to C.R.L., FRQS fellowships to J.-B.L., NSERC USRA summer scholarships to L.N.T., FRQNT and NSERC PhD fellowships to G.C. Some of this material (yeast collection) is based on work supported by the National Science Foundation under grant no. DEB-1253634 (C.T.H.) and by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02–07ER64494). C.T.H. is a Pew Scholar in the Biomedical Sciences, supported by the Pew Charitable Trusts. C.R.L. is a FRQS Junior Investigator and holds the Canada Research Chair in Evolutionary Cell and Systems Biology.

Author information




J.B.L., C.R.L., L.N.T. and G.C. planned the experiments. G.C., J.B.L. and C.E. performed experiments. J.B.L., L.N.T. and J.P.V. performed bioinformatic analyses. P.S., K.S., C.T.H. and G.B. provided strains and discussion in the early stages of this study. J.B.L. and C.R.L. drafted the manuscript with contributions from L.N.T., G.C., C.E., P.S. and G.B.

Corresponding authors

Correspondence to Jean-Baptiste Leducq or Christian R. Landry.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Tables 2–11, Figures 1–16, Methods, Text and References (PDF 8991 kb)

Supplementary Table 1

List of strains used in this study (XLSX 48 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leducq, JB., Nielly-Thibault, L., Charron, G. et al. Speciation driven by hybridization and chromosomal plasticity in a wild yeast. Nat Microbiol 1, 15003 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing