Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

pks5-recombination-mediated surface remodelling in Mycobacterium tuberculosis emergence

Abstract

Mycobacterium tuberculosis is a major, globally spread, aerosol-transmitted human pathogen, thought to have evolved by clonal expansion from a Mycobacterium canettii-like progenitor. In contrast, extant M. canettii strains are rare, genetically diverse, and geographically restricted mycobacteria of only marginal epidemiological importance. Here, we show that the contrasting evolutionary success of these two groups is linked to loss of lipooligosaccharide biosynthesis and subsequent morphotype changes. Spontaneous smooth-to-rough M. canettii variants were found to be mutated in the polyketide-synthase-encoding pks5 locus and deficient in lipooligosaccharide synthesis, a phenotype restored by complementation. Importantly, these rough variants showed an altered host–pathogen interaction and increased virulence in cellular- and animal-infection models. In one variant, lipooligosaccharide deficiency occurred via homologous recombination between two pks5 genes and removal of the intervening acyltransferase-encoding gene. The resulting single pks5 configuration is similar to that fixed in M. tuberculosis, which is known to lack lipooligosaccharides. Our results suggest that pks5-recombination-mediated bacterial surface remodelling increased virulence, driving evolution from putative generalist mycobacteria towards professional pathogens of mammalian hosts.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Comparison of pks5 genomic region of various mycobacterial strains.
Figure 2: Complementation of morphology phenotypes of R variants.
Figure 3: PFGE and Southern hybridization analyses with PCR-derived probes binding either in a conserved domain of pks5 or within the pap gene.
Figure 4: Deficient LOS production in rough morphotypes.
Figure 5: Morphotype-associated differences in host–pathogen interaction.
Figure 6: Scheme showing supposed molecular key events in mycobacterial evolution from the recombinogenic M. canettii strain pool of putative environmental origin, towards professional pathogens of mammalian hosts evolved by clonal expansion of one emerging sublineage.

References

  1. 1

    Bottai, D., Stinear, T. P., Supply, P. & Brosch, R. Mycobacterial pathogenomics and evolution. Microbiol. Spectrum 2, MGM2-0025-2013 (2014).

  2. 2

    Le Chevalier, F., Cascioferro, A., Majlessi, L., Herrmann, J. L. & Brosch, R. Mycobacterium tuberculosis evolutionary pathogenesis and its putative impact on drug development. Future Microbiol. 9, 969–985 (2014).

    Article  Google Scholar 

  3. 3

    Supply, P. et al. Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nature Genet. 45, 172–179 (2013).

    Article  Google Scholar 

  4. 4

    van Soolingen, D. et al. A novel pathogenic taxon of the Mycobacterium tuberculosis complex, Canetti: characterization of an exceptional isolate from Africa. Int. J. Syst. Bacteriol. 47, 1236–1245 (1997).

    Article  Google Scholar 

  5. 5

    Gutierrez, M. C. et al. Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog. 1, e5 (2005).

    Article  Google Scholar 

  6. 6

    Koeck, J. L. et al. Clinical characteristics of the smooth tubercle bacilli ‘Mycobacterium canettii’ infection suggest the existence of an environmental reservoir. Clin. Microbiol. Infect. 17, 1013–1019 (2011).

    Article  Google Scholar 

  7. 7

    Blouin, Y. et al. Progenitor ‘Mycobacterium canettii’ clone responsible for lymph node tuberculosis epidemic, Djibouti. Emerg. Infect. Dis. 20, 21–28 (2014).

    Article  Google Scholar 

  8. 8

    Dormans, J. et al. Correlation of virulence, lung pathology, bacterial load and delayed type hypersensitivity responses after infection with different Mycobacterium tuberculosis genotypes in a BALB/c mouse model. Clin. Exp. Immunol. 137, 460–468 (2004).

    Article  Google Scholar 

  9. 9

    Boritsch, E. C. et al. A glimpse into the past and predictions for the future: the molecular evolution of the tuberculosis agent. Mol. Microbiol. 93, 835–852 (2014).

    Article  Google Scholar 

  10. 10

    Panas, M. W. et al. Noncanonical SMC protein in Mycobacterium smegmatis restricts maintenance of Mycobacterium fortuitum plasmids. Proc. Natl Acad. Sci. USA 111, 13264–13271 (2014).

    Article  Google Scholar 

  11. 11

    Kansal, R. G., Gomez-Flores, R. & Mehta, R. T. Change in colony morphology influences the virulence as well as the biochemical properties of the Mycobacterium avium complex. Microb. Pathog. 25, 203–214 (1998).

    Article  Google Scholar 

  12. 12

    Catherinot, E. et al. Hypervirulence of a rough variant of the Mycobacterium abscessus type strain. Infect. Immun. 75, 1055–1058 (2007).

    Article  Google Scholar 

  13. 13

    Belisle, J. T. & Brennan, P. J. Chemical basis of rough and smooth variation in mycobacteria. J. Bacteriol. 171, 3465–3470 (1989).

    Article  Google Scholar 

  14. 14

    van der Woude, A. D. et al. Unexpected link between lipooligosaccharide biosynthesis and surface protein release in Mycobacterium marinum. J. Biol. Chem. 287, 20417–20429 (2012).

    Article  Google Scholar 

  15. 15

    Barrow, W. W. & Brennan, P. J. Isolation in high frequency of rough variants of Mycobacterium intracellulare lacking C-mycoside glycopeptidolipid antigens. J. Bacteriol. 150, 381–384 (1982).

    Google Scholar 

  16. 16

    Howard, S. T. et al. Spontaneous reversion of Mycobacterium abscessus from a smooth to a rough morphotype is associated with reduced expression of glycopeptidolipid and reacquisition of an invasive phenotype. Microbiology 152, 1581–1590 (2006).

    Article  Google Scholar 

  17. 17

    Pawlik, A. et al. Identification and characterization of the genetic changes responsible for the characteristic smooth-to-rough morphotype alterations of clinically persistent Mycobacterium abscessus. Mol. Microbiol. 90, 612–629 (2013).

    Article  Google Scholar 

  18. 18

    Burguiere, A. et al. LosA, a key glycosyltransferase involved in the biosynthesis of a novel family of glycosylated acyltrehalose lipooligosaccharides from Mycobacterium marinum. J. Biol. Chem. 280, 42124–42133 (2005).

    Article  Google Scholar 

  19. 19

    Ren, H. et al. Identification of the lipooligosaccharide biosynthetic gene cluster from Mycobacterium marinum. Mol. Microbiol. 63, 1345–1359 (2007).

    Article  Google Scholar 

  20. 20

    Lemassu, A., Levy-Frebault, V. V., Laneelle, M. A. & Daffe, M. Lack of correlation between colony morphology and lipooligosaccharide content in the Mycobacterium tuberculosis complex. J. Gen. Microbiol. 138, 1535–1541 (1992).

    Article  Google Scholar 

  21. 21

    Etienne, G. et al. Identification of the polyketide synthase involved in the biosynthesis of the surface-exposed lipooligosaccharides in mycobacteria. J. Bacteriol. 191, 2613–2621 (2009).

    Article  Google Scholar 

  22. 22

    Nataraj, V. et al. MKAN27435 is required for the biosynthesis of higher subclasses of lipooligosaccharides in Mycobacterium kansasii. PLoS ONE 10, e0122804 (2015).

    Article  Google Scholar 

  23. 23

    Minnikin, D. E. et al. in Tuberculosis—Expanding Knowledge (ed. Ribon, W. ) Ch. 7 (InTech, 2015).

    Google Scholar 

  24. 24

    Stinear, T. P. et al. Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome Res. 18, 729–741 (2008).

    Article  Google Scholar 

  25. 25

    Wang, J. et al. Insights on the emergence of Mycobacterium tuberculosis from the analysis of Mycobacterium kansasii. Genome Biol. Evol. 7, 856–870 (2015).

    Article  Google Scholar 

  26. 26

    Quadri, L. E. Biosynthesis of mycobacterial lipids by polyketide synthases and beyond. Crit. Rev. Biochem. Mol. Biol. 49, 179–211 (2014).

    Article  Google Scholar 

  27. 27

    Rousseau, C. et al. Virulence attenuation of two Mas-like polyketide synthase mutants of Mycobacterium tuberculosis. Microbiology 149, 1837–1847 (2003).

    Article  Google Scholar 

  28. 28

    Bange, F. C., Collins, F. M. & Jacobs, W. R. Jr. Survival of mice infected with Mycobacterium smegmatis containing large DNA fragments from Mycobacterium tuberculosis. Tuber. Lung Dis. 79, 171–180 (1999).

    Article  Google Scholar 

  29. 29

    Daffe, M., McNeil, M. & Brennan, P. J. Novel type-specific lipooligosaccharides from Mycobacterium tuberculosis. Biochemistry 30, 378–388 (1991).

    Article  Google Scholar 

  30. 30

    Angala, S. K., Belardinelli, J. M., Huc-Claustre, E., Wheat, W. H. & Jackson, M. The cell envelope glycoconjugates of Mycobacterium tuberculosis. Crit. Rev. Biochem. Mol. Biol. 49, 361–399 (2014).

    Article  Google Scholar 

  31. 31

    Onwueme, K. C., Ferreras, J. A., Buglino, J., Lima, C. D. & Quadri, L. E. Mycobacterial polyketide-associated proteins are acyltransferases: proof of principle with Mycobacterium tuberculosis PapA5. Proc. Natl Acad. Sci. USA 101, 4608–4613 (2004).

    Article  Google Scholar 

  32. 32

    Bhatt, K., Gurcha, S. S., Bhatt, A., Besra, G. S. & Jacobs, W. R. Jr. Two polyketide-synthase-associated acyltransferases are required for sulfolipid biosynthesis in Mycobacterium tuberculosis. Microbiology 153, 513–520 (2007).

    Article  Google Scholar 

  33. 33

    Bottai, D. et al. Increased protective efficacy of recombinant BCG strains expressing virulence-neutral proteins of the ESX-1 secretion system. Vaccine 33, 2710–2718 (2015).

    Article  Google Scholar 

  34. 34

    Rhoades, E. R. et al. Mycobacterium abscessus glycopeptidolipids mask underlying cell wall phosphatidyl-myo-inositol mannosides blocking induction of human macrophage TNF-alpha by preventing interaction with TLR2. J. Immunol. 183, 1997–2007 (2009).

    Article  Google Scholar 

  35. 35

    Roux, A. L. et al. Overexpression of proinflammatory TLR-2-signalling lipoproteins in hypervirulent mycobacterial variants. Cell Microbiol. 13, 692–704 (2011).

    Article  Google Scholar 

  36. 36

    Robinson, R. T., Orme, I. M. & Cooper, A. M. The onset of adaptive immunity in the mouse model of tuberculosis and the factors that compromise its expression. Immunol. Rev. 264, 46–59 (2015).

    Article  Google Scholar 

  37. 37

    Achtman, M. Insights from genomic comparisons of genetically monomorphic bacterial pathogens. Phil. Trans. R. Soc. B 367, 860–867 (2012).

    Article  Google Scholar 

  38. 38

    Portevin, D. et al. A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc. Natl Acad. Sci. USA 101, 314–319 (2004).

    Article  Google Scholar 

  39. 39

    Constant, P. et al. Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. J. Biol. Chem. 277, 38148–38158 (2002).

    Article  Google Scholar 

  40. 40

    Matsunaga, I. et al. Mycobacterium tuberculosis pks12 produces a novel polyketide presented by CD1c to T cells. J. Exp. Med. 200, 1559–1569 (2004).

    Article  Google Scholar 

  41. 41

    Rombouts, Y. et al. Fatty acyl chains of Mycobacterium marinum lipooligosaccharides: structure, localization and acylation by PapA4 (MMAR_2343) protein. J. Biol. Chem. 286, 33678–33688 (2011).

    Article  Google Scholar 

  42. 42

    Alibaud, L. et al. Increased phagocytosis of Mycobacterium marinum mutants defective in lipooligosaccharide production: a structure–activity relationship study. J. Biol. Chem. 289, 215–228 (2014).

    Article  Google Scholar 

  43. 43

    Eckstein, T. M., Inamine, J. M., Lambert, M. L. & Belisle, J. T. A genetic mechanism for deletion of the ser2 gene cluster and formation of rough morphological variants of Mycobacterium avium. J. Bacteriol. 182, 6177–6182 (2000).

    Article  Google Scholar 

  44. 44

    Ortalo-Magne, A. et al. Identification of the surface-exposed lipids on the cell envelopes of Mycobacterium tuberculosis and other mycobacterial species. J. Bacteriol. 178, 456–461 (1996).

    Article  Google Scholar 

  45. 45

    Mortaz, E. et al. Interaction of pattern recognition receptors with Mycobacterium tuberculosis. J. Clin. Immunol. 35, 1–10 (2015).

    Article  Google Scholar 

  46. 46

    Cambier, C. J. et al. Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature 505, 218–222 (2014).

    Article  Google Scholar 

  47. 47

    Gopinath, K., Moosa, A., Mizrahi, V. & Warner, D. F. Vitamin B12 metabolism in Mycobacterium tuberculosis. Future Microbiol. 8, 1405–1418 (2013).

    Article  Google Scholar 

  48. 48

    Young, D. B., Comas, I. & de Carvalho, L. P. Phylogenetic analysis of vitamin B12-related metabolism in Mycobacterium tuberculosis. Front. Mol. Biosci. 2, 6 (2015).

    Article  Google Scholar 

  49. 49

    Danilchanka, O. et al. An outer membrane channel protein of Mycobacterium tuberculosis with exotoxin activity. Proc. Natl Acad. Sci. USA 111, 6750–6755 (2014).

    Article  Google Scholar 

  50. 50

    Delahay et al. The coiled-coil domain of EspA is essential for the assembly of the type III secretion translocon on the surface of enteropathogenic Escherichia coli. J. Biol. Chem. 274, 35969–35974.

    CAS  Article  Google Scholar 

  51. 51

    David, M., Dzamba, M., Lister, D., Ilie, L. & Brudno, M. SHRiMP2: sensitive yet practical SHort Read Mapping. Bioinformatics 27, 1011–1012 (2011).

    Article  Google Scholar 

  52. 52

    Milne, I. et al. Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform. 14, 193–202 (2013).

    Article  Google Scholar 

  53. 53

    Pouseele, H. & Supply, P. Accurate whole-genome sequencing-based epidemiological surveillance of Mycobacterium tuberculosis. Methods Microbiol 42, 359–394 (2015).

    Article  Google Scholar 

  54. 54

    Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006).

    Article  Google Scholar 

  55. 55

    Brosch, R. et al. Comparative genomics uncovers large tandem chromosomal duplications in Mycobacterium bovis BCG Pasteur. Yeast 17, 111–123 (2000).

    Article  Google Scholar 

  56. 56

    Brosch, R. et al. Use of a Mycobacterium tuberculosis H37Rv bacterial artificial chromosome library for genome mapping, sequencing, and comparative genomics. Infect. Immun. 66, 2221–2229 (1998).

    Google Scholar 

  57. 57

    Pham, T. T., Jacobs-Sera, D., Pedulla, M. L., Hendrix, R. W. & Hatfull, G. F. Comparative genomic analysis of mycobacteriophage Tweety: evolutionary insights and construction of compatible site-specific integration vectors for mycobacteria. Microbiology 153, 2711–2723 (2007).

    Article  Google Scholar 

  58. 58

    Cascioferro, A. et al. Xer site-specific recombination, an efficient tool to introduce unmarked deletions into mycobacteria. Appl. Environ. Microbiol. 76, 5312–5316 (2010).

    Article  Google Scholar 

  59. 59

    Delogu, G. et al. Rv1818c-encoded PE_PGRS protein of Mycobacterium tuberculosis is surface exposed and influences bacterial cell structure. Mol. Microbiol. 52, 725–733 (2004).

    Article  Google Scholar 

  60. 60

    Majlessi, L. et al. Influence of ESAT-6 secretion system 1 (RD1) of Mycobacterium tuberculosis on the interaction between mycobacteria and the host immune system. J. Immunol. 174, 3570–3579 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank T. Seemann for initial help with NeighborNet analysis, and H. Pouseele for help with mapping and SNP analysis. The authors also thank I. Rosenkrands and G. Delogu for providing polyclonal anti-SigA antibodies and vector pMV10-25, respectively, and K. Sébastien for expert assistance in animal care in the biosafety-A3 facilities. The authors acknowledge support from a European Community grant (no. 260872), the EU-EFPIA Innovative Medicines Initiative (grant no. 115337), the Agence National de Recherche (ANR-14-JAMR-001-02) and the Fondation pour la Recherche Médicale FRM (DEQ20090515399 and DEQ20130326471). High-throughput sequencing was performed on the Genomics Platform, a member of the ‘France Génomique’ consortium (ANR10-INBS-09-08). R.B. is a member of the LabEx consortium IBEID at the Institut Pasteur. F.L.-C. was supported by the French Region Ile-de-France (Domaine d'Intérêt Majeur Maladies Infectieuses et Emergentes) PhD programme. E.C.B. was supported by a stipend from the Pasteur–Paris University (PPU) International PhD programme and the Institut Carnot Pasteur Maladies Infectieuses.

Author information

Affiliations

Authors

Contributions

E.C.B., C.G., L. Majlessi and R.B. designed the study. E.C.B., W.F., F.L.C. and A.P. performed mycobacterial phenotypic assays and/or infection experiments. E.C.B., A.C. and R.B. established genetic constructs. W.M., G.E., F.L., M.D. and C.G. generated and/or analysed mycobacterial lipid and lipooligosaccharide profiles. E.C.B., L.Ma, C.B., M.O., T.P.S. and P.S. generated and/or analysed sequence data. E.C.B and L.Majlessi conducted and analysed immune assays. E.C.B., T.P.S., P.S., C.G. and R.B. wrote the manuscript, with comments from all authors.

Corresponding authors

Correspondence to Christophe Guilhot or Roland Brosch.

Ethics declarations

Competing interests

P.S. is a consultant for Genoscreen. All other authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–13, Tables 1–5, Note, References and raw data (gels, blots and TLCs). (PDF 9240 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boritsch, E., Frigui, W., Cascioferro, A. et al. pks5-recombination-mediated surface remodelling in Mycobacterium tuberculosis emergence. Nat Microbiol 1, 15019 (2016). https://doi.org/10.1038/nmicrobiol.2015.19

Download citation

Further reading

Search

Quick links