Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Obligate bacterial mutualists evolving from environmental bacteria in natural insect populations

Abstract

Diverse organisms are associated with obligate microbial mutualists. How such essential symbionts have originated from free-living ancestors is of evolutionary interest. Here we report that, in natural populations of the stinkbug Plautia stali, obligate bacterial mutualists are evolving from environmental bacteria. Of six distinct bacterial lineages associated with insect populations, two are uncultivable with reduced genomes, four are cultivable with non-reduced genomes, one uncultivable symbiont is fixed in temperate populations, and the other uncultivable symbiont coexists with four cultivable symbionts in subtropical populations. Symbiont elimination resulted in host mortality for all symbionts, while re-infection with any of the symbionts restored normal host growth, indicating that all the symbionts are indispensable and almost equivalent functionally. Some aseptic newborns incubated with environmental soils acquired the cultivable symbionts and normal growth was restored, identifying them as environmental Pantoea spp. Our finding uncovers an evolutionary transition from a free-living lifestyle to obligate mutualism that is currently ongoing in nature.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plautia stali and its gut symbiotic bacteria.
Figure 2: Symbiont polymorphism in natural populations.
Figure 3: Effects of symbiont elimination and replacement.
Figure 4: Acquisition of symbiotic bacteria from environmental soil.
Figure 5: Effects of interspecific symbiont replacement.

Similar content being viewed by others

References

  1. Douglas, A. E. The Symbiotic Habit (Princeton Univ. Press, 2010).

    Google Scholar 

  2. Archibald, J. One Plus One Equals One: Symbiosis and the Evolution of Complex Life (Oxford Univ. Press, 2014).

    Google Scholar 

  3. Buchner, P. Endosymbiosis of Animals with Plant Microorganisms (Interscience Publisher, 1965).

    Google Scholar 

  4. Bourtzis, K. & Miller, T. A. Insect Symbiosis (CRC Press, 2003).

    Book  Google Scholar 

  5. Moran, N. A., McCutcheon, J. P. & Nakabachi, A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42, 165–190 (2008).

    Article  Google Scholar 

  6. Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y. & Ishikawa, H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407, 81–86 (2000).

    Article  Google Scholar 

  7. Akman, L. et al. Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nature Genet. 32, 402–407 (2002).

    Article  Google Scholar 

  8. Nikoh, N., Hosokawa, T., Oshima, K., Hattori, M. & Fukatsu, T. Reductive evolution of bacterial genome in insect gut environment. Genome Biol. Evol. 3, 702–714 (2011).

    Article  Google Scholar 

  9. Kaiwa, N. et al. Symbiont-supplemented maternal investment underpinning host's ecological adaptation. Curr. Biol. 24, 2465–2470 (2014).

    Article  Google Scholar 

  10. Wernegreen, J. J. Genome evolution in bacterial endosymbionts of insects. Nature Rev. Genet. 3, 850–861 (2002).

    Article  Google Scholar 

  11. McCutcheon, J. P. & Moran, N. A. Extreme genome reduction in symbiotic bacteria. Nature Rev. Microbiol. 10, 13–26 (2011).

    Article  Google Scholar 

  12. Schaefer, C. W. & Panizzi, A. R. Heteroptera of Economic Importance (CRC, 2000).

    Book  Google Scholar 

  13. Abe, Y., Mishiro, K. & Takanashi, M. Symbiont of brown-winged green bug, Plautia stali Scott. Jpn J. Appl. Entomol. Zool. 39, 109–115 (1995).

    Article  Google Scholar 

  14. Prado, S. S. & Almeida, R. P. P. Phylogenetic placement of pentatomid stink bug gut symbionts. Curr. Microbiol. 58, 64–69 (2009).

    Article  Google Scholar 

  15. Kobayashi, H., Kawasaki, K., Takeishi, K. & Noda, H. Symbiont of the stink bug Plautia stali synthesizes rough-type lipopolysaccharide. Microbiol. Res. 167, 48–54 (2011).

    Article  Google Scholar 

  16. Kikuchi, Y., Hosokawa, T. & Fukatsu, T. in Microbial Ecology Research Trends (ed. Dijk, T. V. ) 39–63 (Nova Science, 2008).

    Google Scholar 

  17. Brady, C. et al. Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). Syst. Appl. Microbiol. 31, 447–460 (2008).

    Article  Google Scholar 

  18. Kikuchi, Y., Hosokawa, T. & Fukatsu, T. An ancient but promiscuous host–symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME J. 5, 446–460 (2011).

    Article  Google Scholar 

  19. Hosokawa, T., Kikuchi, Y., Nikoh, N. & Fukatsu, T. Polyphyly of gut symbionts in stinkbugs of the family Cydnidae. Appl. Environ. Microbiol. 78, 4758–4761 (2012).

    Article  Google Scholar 

  20. Bansal, R., Michel, A. P. & Sabree, Z. L. The crypt-dwelling primary bacterial symbiont of the polyphagous pentatomid pest Halyomorpha halys (Hemiptera: Pentatomidae). Environ. Entomol. 43, 617–625 (2014).

    Article  Google Scholar 

  21. Bistolas, K. S. I., Sakamoto, R. I., Fernandes, J. A. M. & Goffredi, S. K. Symbiont polyphyly, co-evolution, and necessity in pentatomid stinkbugs from Costa Rica. Front. Microbiol. 5, 349 (2014).

    Article  Google Scholar 

  22. Grant, P. R. & Grant, B. R. Unpredictable evolution in a 30-year study of Darwin's finches. Science 296, 707–711 (2002).

    Article  Google Scholar 

  23. Salem, H. et al. Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. Proc. R. Soc. Lond. B 282, 1803 (2014).

    Google Scholar 

  24. Kado, C. I. Erwinia and related genera. Prokaryotes 6, 443–450 (2006).

    Article  Google Scholar 

  25. Russell, J. A. & Moran, N. A. Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc. R. Soc. Lond. B 273, 603–610 (2006).

    Article  Google Scholar 

  26. Dunbar, H. E., Wilson, A. C. C., Ferguson, N. R. & Moran, N. A. Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biol. 5, e96 (2007).

    Article  Google Scholar 

  27. Tsuchida, T., Koga, R. & Fukatsu, T. Host plant specialization governed by facultative symbiont. Science 303, 1989 (2004).

    Article  Google Scholar 

  28. Hosokawa, T., Kikuchi, Y., Shimada, M. & Fukatsu, T. Obligate symbiont involved in pest status of host insect. Proc. R. Soc. Lond. B 274, 1979–1984 (2007).

    Article  Google Scholar 

  29. Clayton, A. L. et al. A novel human-infection-derived bacterium provides insights into the evolutionary origins of mutualistic insect–bacterial symbioses. PLoS Pathog. 8, e1002990 (2012).

    Article  Google Scholar 

  30. Sachs, J. L., Skophammer, R. G., Bansal, N. & Stajich, J. E. Evolutionary origins and diversification of proteobacterial mutualists. Proc. R. Soc. Lond. B 281, 20132146 (2014).

    Article  Google Scholar 

  31. Mau, R. F. L. & Mitchell, W. C. Development and reproduction of the oriental stink bug, Plautia stali (Hemiptera: Pentatomidae). Ann. Entomol. Soc. Am. 71, 756–757 (1978).

    Article  Google Scholar 

  32. Hosokawa, T., Kikuchi, Y., Nikoh, N., Shimada, M. & Fukatsu, T. Strict host–symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biol. 4, e337 (2006).

    Article  Google Scholar 

  33. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  Google Scholar 

  34. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    Article  Google Scholar 

  35. Delcher, A. L., Bratke, K. A., Edwin, C., Powers, E. C. & Salzberg, S. L. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23, 673–679 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank M. Baba, N. Baba, Y. G. Baba, D. Haraguchi, H. Hirayama, M. Hironaka, S. Kada, N. Kaiwa, Y. Kikuchi, K. Kizaki, S. Kudo, T. Makino, M. Moriyama, N. Nagata, S. Ohno, T. Ohtani, M. Ono, M. Sakakibara, H. Toju, K. Tsuji, N. Tsurusaki, T. Uesato, R. Ukuda, H. Watanabe and T. Yamaguchi for insect samples; J. Makino, N. Tanifuji, U. Asaga and W. Kikuchi for technical assistance; J. P. McCutcheon for comments on the manuscript; and Y. Nakajima and Y. Kikuchi for logistic and technical support. This study was supported by a JSPS KAKENHI grant (25221107) to T.F. and by the University of the Ryukyus Foundation to T.H., and Y.I. was supported by a JSPS Fellowship for Young Scientists.

Author information

Authors and Affiliations

Authors

Contributions

T.H. and T.F. designed the study. T.H. performed most experiments and data analyses. Y.I. conducted some symbiont-replacing experiments. N.N. analysed the symbiont genome data. M.F. and N.S. determined the draft genome sequences of the symbionts. T.H. and T.F. wrote the paper with input from all authors.

Corresponding author

Correspondence to Takema Fukatsu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–8 and Tables 1–5. (PDF 7326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosokawa, T., Ishii, Y., Nikoh, N. et al. Obligate bacterial mutualists evolving from environmental bacteria in natural insect populations. Nat Microbiol 1, 15011 (2016). https://doi.org/10.1038/nmicrobiol.2015.11

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2015.11

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing