Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolution of atypical enteropathogenic E. coli by repeated acquisition of LEE pathogenicity island variants

Abstract

Atypical enteropathogenic Escherichia coli (aEPEC) is an umbrella term given to E. coli that possess a type III secretion system encoded in the locus of enterocyte effacement (LEE), but lack the virulence factors (stx, bfpA) that characterize enterohaemorrhagic E. coli and typical EPEC, respectively. The burden of disease caused by aEPEC has recently increased in industrialized and developing nations, yet the population structure and virulence profile of this emerging pathogen are poorly understood. Here, we generated whole-genome sequences of 185 aEPEC isolates collected during the Global Enteric Multicenter Study from seven study sites in Asia and Africa, and compared them with publicly available E. coli genomes. Phylogenomic analysis revealed ten distinct widely distributed aEPEC clones. Analysis of genetic variation in the LEE pathogenicity island identified 30 distinct LEE subtypes divided into three major lineages. Each LEE lineage demonstrated a preferred chromosomal insertion site and different complements of non-LEE encoded effector genes, indicating distinct patterns of evolution of these lineages. This study provides the first detailed genomic framework for aEPEC in the context of the EPEC pathotype and will facilitate further studies into the epidemiology and pathogenicity of EPEC by enabling the detection and tracking of specific clones and LEE variants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogeny of E. coli based on SNPs within 1,810 core genes.
Figure 2: Detection of aEPEC diversity and temporal and geographic distribution of aEPEC clones across the GEMS sites.
Figure 3: Nucleotide similarity and selection pressures within the LEE.
Figure 4: Co-evolution of sub-networks of LEE genes.
Figure 5: Identification of 30 LEE subtypes within 252 genomes and characterization of Nle-effector gene repertoire.
Figure 6: Distribution of LEE subtypes among 252 E. coli isolates.

Similar content being viewed by others

References

  1. Ochoa, T. J. & Contreras, C. A. Enteropathogenic Escherichia coli infection in children. Curr. Opin. Infect. Dis. 24, 478–483 (2011).

    Google Scholar 

  2. Hernandes, R. T., Elias, W. P., Vieira, M. A. M. & Gomes, T. A. T. An overview of atypical enteropathogenic Escherichia coli. FEMS Microbiol. Lett. 297, 137–149 (2009).

    Google Scholar 

  3. Trabulsi, L. R., Keller, R. & Gomes, T. A. T. Typical and atypical enteropathogenic Escherichia coli. Emerg. Infect. Dis. 8, 1–6 (2002).

    Google Scholar 

  4. Kaper, J. B., Nataro, J. P. & Mobley, H. L. T. Pathogenic Escherichia coli. Nature Rev. Microbiol. 2, 123–140 (2004).

    Google Scholar 

  5. Bugarel, M., Martin, A., Fach, P. & Beutin, L. Virulence gene profiling of enterohemorrhagic (EHEC) and enteropathogenic (EPEC) Escherichia coli strains: a basis for molecular risk assessment of typical and atypical EPEC strains. BMC Microbiol. 11, 1–10 (2011).

    Google Scholar 

  6. Von Mentzer, A. et al. Identification of enterotoxigenic Escherichia coli (ETEC) clades with long-term global distribution. Nature Genet. 46, 1321–1326 (2014).

    Google Scholar 

  7. Croxen, M. A. et al. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol. Rev. 26, 822–880 (2013).

    Google Scholar 

  8. Elliot, S. J. et al. The complete sequence of the locus of enterocyte effacement (LEE) from the enteropathogenic Escherichia coli E2348/69. Mol. Microbiol. 28, 1–4 (1998).

    Google Scholar 

  9. Müller, D. et al. Comparative analysis of the locus of enterocyte effacement and its flanking regions. Infect. Immun. 77, 3501–3513 (2009).

    Google Scholar 

  10. Hueck, C. J. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379–433 (1998).

    Google Scholar 

  11. Abby, S. S. & Rocha, E. P. C. The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems. PLoS Genet. 8, e1002983 (2012).

    Google Scholar 

  12. Gauthier, A., Thomas, N. A. & Finlay, B. B. Bacterial injection machines. J. Biol. Chem. 278, 25273–25276 (2003).

    Google Scholar 

  13. Raymond, B. et al. Subversion of trafficking, apoptosis, and innate immunity by type III secretion system effectors. Trends Microbiol. 21, 430–441 (2013).

    Google Scholar 

  14. Dean, P. & Kenny, B. The effector repertoire of enteropathogenic E. coli: ganging up on the host cell. Curr. Opin. Microbiol. 12, 101–109 (2009).

    Google Scholar 

  15. Hazen, T. H. et al. Refining the pathovar paradigm via phylogenomics of the attaching and effacing Escherichia coli. Proc. Natl Acad. Sci. USA 1–6 (2013).

  16. Castillo, A., Eguiarte, L. E. & Souza, V. A genomic population genetics analysis of the pathogenic enterocyte effacement island in Escherichia coli: the search for the unit of selection. Proc. Natl Acad. Sci. USA 102, 1542–1547 (2005).

    Google Scholar 

  17. Gartner, J. F. & Schmidt, M. A. Comparative analysis of locus of enterocyte effacement pathogenicity islands of atypical enteropathogenic Escherichia coli. Infect. Immun. 72, 6722–6728 (2004).

    Google Scholar 

  18. Lacher, D. W., Steinsland, H. & Whittam, T. S. Allelic subtyping of the intimin locus (eae) of pathogenic Escherichia coli by fluorescent RFLP. FEMS Microbiol. Lett. 261, 80–87 (2006).

    Google Scholar 

  19. Contreras, C. A. et al. Genetic diversity of locus of enterocyte effacement genes of enteropathogenic Escherichia coli isolated from Peruvian children. J. Med. Microbiol. 61, 1114–1120 (2012).

    Google Scholar 

  20. Pearson, J. S. et al. A type III effector antagonizes death receptor signalling during bacterial gut infection. Nature 501, 247–251 (2013).

    Google Scholar 

  21. Giogha, C., Lung, T. W. F., Pearson, J. S. & Hartland, E. L. Inhibition of death receptor signaling by bacterial gut pathogens. Cytokine Growth Factor Rev. 25, 235–243 (2014).

    Google Scholar 

  22. Kotloff, K. L. et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 382, 209–222 (2013).

    Google Scholar 

  23. Panchalingam, S. et al. Diagnostic microbiologic methods in the GEMS-1 case/control Study. Clin. Infect. Dis. 55, S294–S302 (2012).

    Google Scholar 

  24. Wirth, T. et al. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol. Microbiol. 60, 1136–1151 (2006).

    Google Scholar 

  25. Didelot, X., Meric, G., Falush, D. & Darling, A. E. Impact of homologous and non-homologous recombination in the genomic evolution of Escherichia coli. BMC Genom. 13, 1–15 (2012).

    Google Scholar 

  26. Ogura, Y. et al. Systematic identification and sequence analysis of the genomic islands of the enteropathogenic Escherichia coli strain B171–8 by the combined use of whole-genome PCR scanning and fosmid mapping. J. Bacteriol. 190, 6948–6960 (2008).

    Google Scholar 

  27. Donnenberg, M. S. & Finlay, B. B. Combating enteropathogenic Escherichia coli (EPEC) infections: the way forward. Trends Microbiol. 21, 317–319 (2013).

    Google Scholar 

  28. Schmidt, M. A. LEEways: tales of EPEC, ATEC and EHEC. Cell Microbiol. 12, 1544–1552 (2010).

    Google Scholar 

  29. Dean, P. & Kenny, B. Intestinal barrier dysfunction by enteropathogenic Escherichia coli is mediated by two effector molecules and a bacterial surface protein. Mol. Microbiol. 54, 665–675 (2004).

    Google Scholar 

  30. Quail, M. A., Swerdlow, H. & Turner, D. J. Improved protocols for the Illumina Genome Analyzer sequencing system. Curr. Protoc. Human Genet. 18.2, 1–27 (2009).

    Google Scholar 

  31. Ogura, Y. et al. Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli. Proc. Natl Acad. Sci. USA 106, 17939–17944 (2009).

    Google Scholar 

  32. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Google Scholar 

  33. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Google Scholar 

  34. Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).

    Google Scholar 

  35. Didelot, X. & Wilson, D. J. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput. Biol. 11, e1004041 (2015).

    Google Scholar 

  36. Pommier, T., Canbäck, B., Lundberg, P., Hagström, Å. & Tunlid, A. RAMI: a tool for identification and characterization of phylogenetic clusters in microbial communities. Bioinformatics 25, 736–742 (2009).

    Google Scholar 

  37. Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).

    Google Scholar 

  38. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Google Scholar 

  39. Inouye, M. et al. SRST2: rapid genomic surveillance for public health and hospital microbiology labs. Genome Med. 6, 1–16 (2014).

    Google Scholar 

  40. Tamura, K., Stecher, G., Petersen, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    Google Scholar 

  41. Charif, D. & Lobry, J. R. in Structural approaches to sequence evolution molecules, networks, populations (eds. Bastolla, U., Porto, M., Roman, H. E. & Vendruscolo, M. ) 207–232 (Springer Verlag, 2007).

    Google Scholar 

  42. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Google Scholar 

  43. Dray, S. & Dufour, A. B. The ade4 package: implementing the duality diagram for ecologists. J. Statist. Software 22, 1–20 (2007).

    Google Scholar 

  44. Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P. L. & Ideker, T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27, 431–432 (2011).

    Google Scholar 

  45. Huson, D. H. & Scornavacca, C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. System. Biol. 61, 1061–1067 (2012).

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Australian NHMRC (project grant nos. 1009296 and 1067428 to R.M.R.-B., fellowship no. 1061409 to K.E.H.), the Wellcome Trust (grant no. 098051 to the Wellcome Trust Sanger Institute, WTSI), the Bill & Melinda Gates Foundation (grant ID no. 38874 to M.M.L.) and the Victorian Life Sciences Computation Initiative (grant no. VR0082). The authors thank the sequencing teams at the WTSI for genome sequencing.

Author information

Authors and Affiliations

Authors

Contributions

D.J.I., M.T., R.M.R.-B. and K.E.H. contributed to the design of the study and data interpretation. K.I.A., T.A., V.B.-W., J.S.P., D.H. and D.J.I. performed the experimental analyses. D.J.P. and G.D. sequenced the isolates. D.J.I. performed the majority of bioinformatics analyses with input from K.E.H. D.J.E. developed the mapping pipeline RedDog. R.M.R.-B., M.T. and K.E.H. supervised. B.T., M.A., J.B.O., J.A.H., S.Q., T.R., A.H., K.L.K., J.P.N. and M.M.L. were responsible for the experimental analyses at the GEMS sites and K.L.K., J.P.N. and M.M.L. for the design of GEMS. All authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Danielle J. Ingle, Roy M. Robins-Browne or Kathryn E. Holt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–10, Tables 2–6, Notes and References (PDF 4330 kb)

Supplementary Table 1

Supplementary Table 1 (XLSX 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ingle, D., Tauschek, M., Edwards, D. et al. Evolution of atypical enteropathogenic E. coli by repeated acquisition of LEE pathogenicity island variants. Nat Microbiol 1, 15010 (2016). https://doi.org/10.1038/nmicrobiol.2015.10

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2015.10

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research