Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Channelrhodopsin-2 and optical control of excitable cells

Abstract

Electrically excitable cells are important in the normal functioning and in the pathophysiology of many biological processes. These cells are typically embedded in dense, heterogeneous tissues, rendering them difficult to target selectively with conventional electrical stimulation methods. The algal protein Channelrhodopsin-2 offers a new and promising solution by permitting minimally invasive, genetically targeted and temporally precise photostimulation. Here we explore technological issues relevant to the temporal precision, spatial targeting and physiological implementation of ChR2, in the context of other photostimulation approaches to optical control of excitable cells.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Functional expression of ChR2 in intact rodent hippocampus.
Figure 2: Spectral properties of photostimulation techniques and imaging dyes.

References

  1. Fork, R.L. Laser stimulation of nerve cells in Aplysia. Science 171, 907–908 (1971).

    CAS  Article  Google Scholar 

  2. Hirase, H., Nikolenko, V., Goldberg, J.H. & Yuste, R. Multiphoton stimulation of neurons. J. Neurobiol. 51, 237–247 (2002).

    Article  Google Scholar 

  3. Miesenbock, G. & Kevrekidis, I.G. Optical imaging and control of genetically designated neurons in functioning circuits. Annu. Rev. Neurosci. 28, 533–563 (2005).

    Article  Google Scholar 

  4. Kramer, R.H., Chambers, J.J. & Trauner, D. Photochemical tools for remote control of ion channels in excitable cells. Nat. Chem. Biol. 1, 360–365 (2005).

    CAS  Article  Google Scholar 

  5. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    CAS  Article  Google Scholar 

  6. Li, X. et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl. Acad. Sci. USA 102, 17816–17821 (2005).

    CAS  Article  Google Scholar 

  7. Ishizuka, T., Kakuda, M., Araki, R. & Yawo, H. Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci. Res. 54, 85–94 (2006).

    CAS  Article  Google Scholar 

  8. Nagel, G. et al. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol. 15, 2279–2284 (2005).

    CAS  Article  Google Scholar 

  9. Callaway, E.M. & Katz, L.C. Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc. Natl. Acad. Sci. USA 90, 7661–7665 (1993).

    CAS  Article  Google Scholar 

  10. Zemelman, B.V., Nesnas, N., Lee, G.A. & Miesenbock, G. Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons. Proc. Natl. Acad. Sci. USA 100, 1352–1357 (2003).

    CAS  Article  Google Scholar 

  11. Melyan, Z., Tarttelin, E.E., Bellingham, J., Lucas, R.J. & Hankins, M.W. Addition of human melanopsin renders mammalian cells photoresponsive. Nature 433, 741–745 (2005).

    CAS  Article  Google Scholar 

  12. Banghart, M., Borges, K., Isacoff, E., Trauner, D. & Kramer, R.H. Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7, 1381–1386 (2004).

    CAS  Article  Google Scholar 

  13. Volgraf, M. et al. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat. Chem. Biol. 2, 47–52 (2006).

    CAS  Article  Google Scholar 

  14. Nagel, G. et al. Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296, 2395–2398 (2002).

    CAS  Article  Google Scholar 

  15. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100, 13940–13945 (2003).

    CAS  Article  Google Scholar 

  16. Zemelman, B.V., Lee, G.A., Ng, M. & Miesenbock, G. Selective photostimulation of genetically chARGed neurons. Neuron 33, 15–22 (2002).

    CAS  Article  Google Scholar 

  17. Adams, S.R. & Tsien, R.Y. Controlling cell chemistry with caged compounds. Annu. Rev. Physiol. 55, 755–784 (1993).

    CAS  Article  Google Scholar 

  18. Shoham, S., O'Connor, D.H., Sarkisov, D.V. & Wang, S.S. Rapid neurotransmitter uncaging in spatially defined patterns. Nat. Methods 2, 837–843 (2005).

    CAS  Article  Google Scholar 

  19. Losonczy, A. & Magee, J.C. Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50, 291–307 (2006).

    CAS  Article  Google Scholar 

  20. Yoshimura, Y., Dantzker, J.L. & Callaway, E.M. Excitatory cortical neurons form fine-scale functional networks. Nature 433, 868–873 (2005).

    CAS  Article  Google Scholar 

  21. Pettit, D.L., Helms, M.C., Lee, P., Augustine, G.J. & Hall, W.C. Local excitatory circuits in the intermediate gray layer of the superior colliculus. J. Neurophysiol. 81, 1424–1427 (1999).

    CAS  Article  Google Scholar 

  22. Callaway, E.M. & Yuste, R. Stimulating neurons with light. Curr. Opin. Neurobiol. 12, 587–592 (2002).

    CAS  Article  Google Scholar 

  23. Lima, S.Q. & Miesenbock, G. Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121, 141–152 (2005).

    CAS  Article  Google Scholar 

  24. Qiu, X. et al. Induction of photosensitivity by heterologous expression of melanopsin. Nature 433, 745–749 (2005).

    CAS  Article  Google Scholar 

  25. Hegemann, P., Ehlenbeck, S. & Gradmann, D. Multiple photocycles of channelrhodopsin. Biophys. J. 89, 3911–3918 (2005).

    CAS  Article  Google Scholar 

  26. McBain, C.J. & Fisahn, A. Interneurons unbound. Nat. Rev. Neurosci. 2, 11–23 (2001).

    CAS  Article  Google Scholar 

  27. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003).

    CAS  Article  Google Scholar 

  28. Miesenbock, G. Genetic methods for illuminating the function of neural circuits. Curr. Opin. Neurobiol. 14, 395–402 (2004).

    CAS  Article  Google Scholar 

  29. Callaway, E.M. A molecular and genetic arsenal for systems neuroscience. Trends Neurosci. 28, 196–201 (2005).

    CAS  Article  Google Scholar 

  30. Davidson, B.L. & Breakefield, X.O. Viral vectors for gene delivery to the nervous system. Nat. Rev. Neurosci. 4, 353–364 (2003).

    CAS  Article  Google Scholar 

  31. Ehrengruber, M.U. et al. Gene transfer into neurons from hippocampal slices: comparison of recombinant Semliki Forest Virus, adenovirus, adeno-associated virus, lentivirus, and measles virus. Mol. Cell. Neurosci. 17, 855–871 (2001).

    CAS  Article  Google Scholar 

  32. Zennou, V. et al. The HIV-1 DNA flap stimulates HIV vector-mediated cell transduction in the brain. Nat. Biotechnol. 19, 446–450 (2001).

    CAS  Article  Google Scholar 

  33. Dittgen, T. et al. Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc. Natl. Acad. Sci. USA 101, 18206–18211 (2004).

    CAS  Article  Google Scholar 

  34. Sena-Esteves, M., Tebbets, J.C., Steffens, S., Crombleholme, T. & Flake, A.W. Optimized large-scale production of high titer lentivirus vector pseudotypes. J. Virol. Methods 122, 131–139 (2004).

    CAS  Article  Google Scholar 

  35. Zhao, C., Teng, E.M., Summers, R.G., Jr, Ming, G.L. & Gage, F.H. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J. Neurosci. 26, 3–11 (2006).

    CAS  Article  Google Scholar 

  36. Mazarakis, N.D. et al. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum. Mol. Genet. 10, 2109–2121 (2001).

    CAS  Article  Google Scholar 

  37. Wong, L.F. et al. Transduction patterns of pseudotyped lentiviral vectors in the nervous system. Mol. Ther. 9, 101–111 (2004).

    CAS  Article  Google Scholar 

  38. Bi, A. et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50, 23–33 (2006).

    CAS  Article  Google Scholar 

  39. Weick, J.P., Groth, R.D., Isaksen, A.L. & Mermelstein, P.G. Interactions with PDZ proteins are required for L-type calcium channels to activate cAMP response element-binding protein-dependent gene expression. J. Neurosci. 23, 3446–3456 (2003).

    CAS  Article  Google Scholar 

  40. Garrido, J.J. et al. A targeting motif involved in sodium channel clustering at the axonal initial segment. Science 300, 2091–2094 (2003).

    CAS  Article  Google Scholar 

  41. Farber, I.C. & Grinvald, A. Identification of presynaptic neurons by laser photostimulation. Science 222, 1025–1027 (1983).

    CAS  Article  Google Scholar 

  42. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank C. Chan in the Gambhir lab and M. Cordey, V. Gradinaru and K. Kay in the Deisseroth lab for helpful comments and editing. This work was supported by fellowships from the US National Institutes of Health (F.Z.), California Institute of Regenerative Medicine (L-P.W.) and the Helen Hay Whitney Foundation (E.S.B.). K.D. is supported by US National Institute of Mental Health (NIMH), National Institute on Drug Abuse (NIDA) and National Institute of General Medical Sciences (NIGMS) as well as by National Alliance for Research on Schizophrenia and Depression (NARSAD), American Psychiatric Institute for Research and Education (APIRE), and the Snyder, Culpeper, Coulter, Klingenstein, Whitehall, McKnight, and Albert Yu and Mary Bechmann Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Deisseroth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, F., Wang, LP., Boyden, E. et al. Channelrhodopsin-2 and optical control of excitable cells. Nat Methods 3, 785–792 (2006). https://doi.org/10.1038/nmeth936

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth936

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing