Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

shRNA libraries and their use in cancer genetics

Abstract

RNA interference was originally described as a powerful tool to inhibit gene expression in model organisms. Until recently, loss-of-function genetic screens in mammalian cells were hampered by a lack of suitable tools that can be used in a high-throughput format. Here we discuss the construction of short-hairpin RNA (shRNA) vector libraries, in particular those generated at the Netherlands Cancer Institute (NKI), and their application in mammalian cancer genetics. We describe their virtues and limitations, as well as different options for screening such libraries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Construction of the NKI shRNA library.
Figure 2: siRNA bar-code screens.

Similar content being viewed by others

References

  1. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  2. Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  Google Scholar 

  3. Paddison, P.J., Caudy, A.A., Bernstein, E., Hannon, G.J. & Conklin, D.S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958 (2002).

    Article  CAS  Google Scholar 

  4. Brummelkamp, T.R., Bernards, R. & Agami, R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2, 243–247 (2002).

    Article  CAS  Google Scholar 

  5. Dirac, A.M. & Bernards, R. Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53. J. Biol. Chem. 278, 11731–11734 (2003).

    Article  CAS  Google Scholar 

  6. Michiels, F. et al. Arrayed adenoviral expression libraries for functional screening. Nat. Biotechnol. 20, 1154–1157 (2002).

    Article  CAS  Google Scholar 

  7. Stegmeier, F., Hu, G., Rickles, R.J., Hannon, G.J. & Elledge, S.J. A lentiviral microRNA-based system for single-copy polymerase II–regulated RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 102, 13212–13217 (2005).

    Article  CAS  Google Scholar 

  8. Khvorova, A., Reynolds, A. & Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

    Article  CAS  Google Scholar 

  9. Ngo, V.N. et al. A loss-of-function RNA interference screen for molecular targets in cancer. Nature 441, 106–110 (2006).

    Article  CAS  Google Scholar 

  10. Van De Wetering, M. et al. Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep. 4, 609–615 (2003).

    Article  CAS  Google Scholar 

  11. Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004).

    Article  CAS  Google Scholar 

  12. Schwarz, D.S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

    Article  CAS  Google Scholar 

  13. Torrance, C.J., Agrawal, V., Vogelstein, B. & Kinzler, K.W. Use of isogenic human cancer cells for high-throughput screening and drug discovery. Nat. Biotechnol. 19, 940–945 (2001).

    Article  CAS  Google Scholar 

  14. Voorhoeve, P. & Agami, R. Tumor-suppressive functions of the human INK4A locus. Cancer Cell 4, 311–319 (2003).

    Article  CAS  Google Scholar 

  15. Brummelkamp, T.R. & Bernards, R. New tools for functional mammalian cancer genetics. Nat. Rev. Cancer 3, 781–789 (2003).

    Article  CAS  Google Scholar 

  16. Brummelkamp, T.R. et al. An shRNA bar code screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nat. Chem. Biol. 2, 202–206 (2006).

    Article  CAS  Google Scholar 

  17. Silva, J.M. et al. Second-generation shRNA libraries covering the mouse and human genomes. Nat. Genet. 37, 1281–1288 (2005).

    Article  CAS  Google Scholar 

  18. Paddison, P.J. et al. A resource for large-scale RNA-interference-based screens in mammals. Nature 428, 427–431 (2004).

    Article  CAS  Google Scholar 

  19. Brummelkamp, T.R. et al. Functional identification of cancer-relevant genes through large-scale RNA interference screens in mammalian cells. Cold Spring Harb. Symp. Quant. Biol. 69, 439–445 (2004).

    Article  CAS  Google Scholar 

  20. Dirac, A.M., Nijman, S.M., Brummelkamp, T.R. & Bernards, R. Functional annotation of deubiquitinating enzymes using RNA interference. Methods Enzymol. 398, 554–567 (2005).

    Article  CAS  Google Scholar 

  21. Westbrook, T.F. et al. A genetic screen for candidate tumor suppressors identifies REST. Cell 121, 837–848 (2005).

    Article  CAS  Google Scholar 

  22. Nijman, S.M. et al. The deubiquitinating enzyme USP1 regulates the Fanconi Anemia pathway. Mol. Cell 17, 331–339 (2005).

    Article  CAS  Google Scholar 

  23. Kolfschoten, I.G. et al. A genetic screen identifies PITX1 as a suppressor of RAS activity and tumorigenicity. Cell 121, 849–858 (2005).

    Article  CAS  Google Scholar 

  24. Hartwell, L.H., Szankasi, P., Roberts, C.J., Murray, A.W. & Friend, S.H. Integrating genetic approaches into the discovery of anticancer drugs. Science 278, 1064–1068 (1997).

    Article  CAS  Google Scholar 

  25. Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283–1298 (2006).

    Article  CAS  Google Scholar 

  26. Brummelkamp, T.R., Nijman, S.M., Dirac, A.M. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424, 797–801 (2003).

    Article  CAS  Google Scholar 

  27. Nicke, B. et al. Involvement of MINK, a Ste20 family kinase, in Ras oncogene-induced growth arrest in human ovarian surface epithelial cells. Mol. Cell 20, 673–685 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Fabius and A. Dirac for critical reading of the manuscript. This work was supported by grants from the Netherlands Genomics Initiative, The EU 6th framework integrated project “INTACT”, the centre for Biomedical genetics (CBG) and the Dutch Cancer Society (KWF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to René Bernards or Roderick L Beijersbergen.

Ethics declarations

Competing interests

R.B. and R.L.B. receive royalties on sales of the shRNA library.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernards, R., Brummelkamp, T. & Beijersbergen, R. shRNA libraries and their use in cancer genetics. Nat Methods 3, 701–706 (2006). https://doi.org/10.1038/nmeth921

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth921

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing