Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Enhancing and confirming the specificity of RNAi experiments

Abstract

RNA interference (RNAi) provides a powerful technique for the derivation and analysis of loss-of-function phenotypes in vertebrate cells, where alternative approaches are either arduous or frequently ineffective. RNAi, however, is not always totally specific, and confirming the specificity, and hence the validity, of data obtained using RNAi therefore forms an essential component of experiments that rely on this technique. Here I briefly review the potential pitfalls associated with RNAi, and then suggest experimental approaches that can be used to maximize the specificity of RNAi or to confirm that the data obtained are indeed valid.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Elbashir, S.M. et al. Duplexes of 21–nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  2. Cullen, B.R. Transcription and processing of human microRNA precursors. Mol. Cell 16, 861–865 (2004).

    Article  CAS  Google Scholar 

  3. Hammond, S.M., Bernstein, E., Beach, D. & Hannon, G.J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–295 (2000).

    Article  CAS  Google Scholar 

  4. Schwarz, D.S., Hutvágner, G., Haley, B. & Zamore, P.D. Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol. Cell 10, 537–548 (2002).

    Article  CAS  Google Scholar 

  5. Khvorova, A., Reynolds, A. & Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

    Article  CAS  Google Scholar 

  6. Schwarz, D.S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

    Article  CAS  Google Scholar 

  7. Paddison, P.J., Caudy, A.A., Bernstein, E., Hannon, G.J. & Conklin, D.S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958 (2002).

    Article  CAS  Google Scholar 

  8. Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  Google Scholar 

  9. Zeng, Y., Wagner, E.J. & Cullen, B.R. Both natural and designed microRNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1327–1333 (2002).

    Article  CAS  Google Scholar 

  10. Stegmeier, F., Hu, G., Rickles, R.J., Hannon, G.J. & Elledge, S.J. A lentiviral micro-RNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 102, 13212–13217 (2005).

    Article  CAS  Google Scholar 

  11. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    Article  CAS  Google Scholar 

  12. Bernstein, E., Caudy, A.A., Hammond, S.M. & Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    Article  CAS  Google Scholar 

  13. Bridge, A.J., Pebernard, S., Ducraux, A., Nicoulaz, A-L. & Iggo, R. Induction of an interferon response by RNAi vectors in mammalian cells. Nat. Genet. 34, 263–264 (2003).

    Article  CAS  Google Scholar 

  14. Fish, R.J. & Kruithof, E.K. Short-term cytotoxic effects and long-term instability of RNAi delivered using lentiviral vectors. BMC Mol. Biol. 5, 9 (2004).

    Article  Google Scholar 

  15. Sledz, C.A., Holko, M., de Veer, M.J., Silverman, R.H. & Williams, B.R.G. Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol. 5, 834–839 (2003).

    Article  CAS  Google Scholar 

  16. Judge, A.D. et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 23, 457–462 (2005).

    Article  CAS  Google Scholar 

  17. Hornung, V. et al. Sequence-specific potent induction of interferon-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med. 11, 263–270 (2005).

    Article  CAS  Google Scholar 

  18. Jackson, A.L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637 (2003).

    Article  CAS  Google Scholar 

  19. Jackson, A.L. et al. Widespread siRNA “off-target”transcript silencing mediated by seed region sequence complementarity. RNA 12, 1179–1187 (2006).

    Article  CAS  Google Scholar 

  20. Birmingham, A. et al. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat. Methods 3, 199–204 (2006).

    Article  CAS  Google Scholar 

  21. Manche, L., Green, S.R., Schmedt, C. & Mathews, M.B. Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol. Cell. Biol. 12, 5238–5248 (1992).

    Article  CAS  Google Scholar 

  22. Persengiev, S.P., Zhu, X. & Green, M.R. Nonspecific concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 10, 12–18 (2004).

    Article  CAS  Google Scholar 

  23. Semizarov, D. et al. Specificity of short interfering RNA determined through gene expression signatures. Proc. Natl. Acad. Sci. USA 100, 6347–6352 (2003).

    Article  CAS  Google Scholar 

  24. Reynolds, A. et al. Induction of the interferon response by siRNA is cell type- and duplex length-dependent. RNA 12, 988–993 (2006).

    Article  CAS  Google Scholar 

  25. Yi, R., Doehle, B.P., Qin, Y., Macara, I.G. & Cullen, B.R. Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. RNA 11, 220–226 (2005).

    Article  CAS  Google Scholar 

  26. Pei, Y. & Tuschl, T. On the art of identifying effective and specific siRNAs. Nat. Methods 3, 670–676 (2006).

    Article  CAS  Google Scholar 

  27. Cullen, B.R. Induction of stable RNA interference in mammalian cells. Gene Ther. 13, 503–508 (2006).

    Article  CAS  Google Scholar 

  28. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    Article  CAS  Google Scholar 

  29. Akusjarvi, G., Svensson, C. & Nygard, O. A mechanism by which adenovirus virus-associated RNAI controls translation in a transient expression assay. Mol. Cell. Biol. 7, 549–551 (1987).

    Article  CAS  Google Scholar 

  30. Scacheri, P.C. et al. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 1892–1897 (2004).

    Article  CAS  Google Scholar 

  31. Fedorov, Y. et al. Off-target effects by siRNA can induce toxic phenotype. RNA 12, 1188–1196 (2006).

    Article  CAS  Google Scholar 

  32. Tiscornia, G., Singer, O., Ikawa, M. & Verma, I.M. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc. Natl. Acad. Sci. USA 100, 1844–1848 (2003).

    Article  CAS  Google Scholar 

  33. Rubinson, D.A. et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33, 401–406 (2003).

    Article  CAS  Google Scholar 

  34. Zeng, Y. & Cullen, B.R. RNA interference in human cells is restricted to the cytoplasm. RNA 8, 855–860 (2002).

    Article  CAS  Google Scholar 

  35. hither RNAi? Nat. Cell Biol. 5, 489–490 (2003).

  36. Myers, J.W., Jones, J.T., Meyer, T. & Ferrell, J.E., Jr. Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing. Nat. Biotechnol. 21, 324–328 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grant GM071408.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan R Cullen.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cullen, B. Enhancing and confirming the specificity of RNAi experiments. Nat Methods 3, 677–681 (2006). https://doi.org/10.1038/nmeth913

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth913

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing