Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enrichment of regulatory CD4+CD25+ T cells by inhibition of phospholipase D signaling

Abstract

Antigen stimulation of lymphocytes induces upregulation of phospholipase D (PLD) activity, but the biological significance of PLD-mediated signaling in T cells has not been well established. Here we demonstrate that PLD signaling is essential for proliferation of mouse CD8+ T cells and CD4+CD25 T cells, but is not required for proliferation of CD4+CD25+ regulatory T cells. We exploited this observation to develop an efficient method to enrich for regulatory T cells starting from preparations of total CD4+ T lymphocytes. Inhibition of PLD signaling blocked effector T-cell proliferation after T cell–antigen receptor (TCR) engagement, but had no significant effect on the proliferation of CD4+CD25+ T cells with regulatory functions. Consequently, cells expanded in vitro for one week by antigen receptor stimulation with PLD signal inhibition were markedly enriched for regulatory T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression and activation of PLD in CD4+ T-cell subpopulations.
Figure 2: Cells expanded in vitro with 1-butanol express an elevated level of Foxp3.
Figure 3: Cells expanded in culture with primary alcohol are potent regulatory cells.
Figure 4: In vivo function of CD41-but cells.
Figure 5: Inhibition of TCR–induced T-cell activation by 1-butanol.
Figure 6: Specific roles played by of PLD1 and PLD2.

Similar content being viewed by others

References

  1. Melendez, A.J. & Allen, J.M. Phospholipase D and immune receptor signaling. Semin. Immunol. 14, 49–55 (2002).

    Article  CAS  Google Scholar 

  2. Exton, J.H. Phospholipase D structure, regulation and function. Rev. Physiol. Biochem. Pharmacol. 144, 1–94 (2002).

    Article  CAS  Google Scholar 

  3. Andresen, B.T., Rizzo, M.A., Shome, K. & Romero, G. The role of phosphatidic acid in the regulation of the Ras/MEK/Erk signaling cascade. FEBS Lett. 531, 65–68 (2002).

    Article  CAS  Google Scholar 

  4. Yang, C. & Kazanietz, M.G. Divergence and complexities in DAG signaling: looking beyond PKC. Trends Pharmacol. Sci. 24, 602–608 (2003).

    Article  CAS  Google Scholar 

  5. Liu, G.L., Shaw, L., Heagerty, A.M., Ohanian, V. & Ohanian, J. Endothelin-1 stimulates hydrolysis of phosphatidylcholine by phospholipases C and D in intact rat mesenteric arteries. J. Vasc. Res. 36, 35–46 (1999).

    Article  CAS  Google Scholar 

  6. Frohman, M.A., Sung, T.C. & Morris, A.J. Mammalian phospholipase D structure and regulation. Biochim. Biophys. Acta 1439, 175–186 (1999).

    Article  CAS  Google Scholar 

  7. McDermott, M., Wakelam, M.J. & Morris, A.J. Phospholipase D. Biochem. Cell Biol. 82, 225–253 (2004).

    Article  CAS  Google Scholar 

  8. Colley, W.C. et al. Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr. Biol. 7, 191–201 (1997).

    Article  CAS  Google Scholar 

  9. Sung, T.C. et al. Mutagenesis of phospholipase D defines a superfamily including a trans–Golgi viral protein required for poxvirus pathogenicity. EMBO J. 16, 4519–4530 (1997).

    Article  CAS  Google Scholar 

  10. Sugars, J.M., Cellek, S., Manifava, M., Coadwell, J. & Ktistakis, N.T. Fatty acylation of phospholipase D1 on cysteine residues 240 and 241 determines localization on intracellular membranes. J. Biol. Chem. 274, 30023–30027 (1999).

    Article  CAS  Google Scholar 

  11. Xie, Z., Ho, W.T. & Exton, J.H. Requirements and effects of palmitoylation of rat PLD1. J. Biol. Chem. 276, 9383–9391 (2001).

    Article  CAS  Google Scholar 

  12. Czarny, M. et al. Phospholipase D2: functional interaction with caveolin in low–density membrane microdomains. FEBS Lett. 467, 326–332 (2000).

    Article  CAS  Google Scholar 

  13. Morris, A.J., Frohman, M.A. & Engebrecht, J. Measurement of phospholipase D activity. Anal. Biochem. 252, 1–9 (1997).

    Article  CAS  Google Scholar 

  14. Biffen, M., Shiroo, M. & Alexander, D.R. Selective coupling of the T cell antigen receptor to phosphoinositide-derived diacylglycerol production in HPB-ALL T cells correlates with CD45–regulated p59fyn activity. Eur. J. Immunol. 23, 2980–2987 (1993).

    Article  CAS  Google Scholar 

  15. Mollinedo, F., Gajate, C. & Flores, I. Involvement of phospholipase D in the activation of transcription factor AP-1 in human T lymphoid Jurkat cells. J. Immunol. 153, 2457–2469 (1994).

    CAS  Google Scholar 

  16. Reid, P.A., Gardner, S.D., Williams, D.M. & Harnett, M.M. The antigen receptors on mature and immature T lymphocytes are coupled to phosphatidylcholine-specific phospholipase D activation. Immunology 90, 250–256 (1997).

    Article  CAS  Google Scholar 

  17. Sakaguchi, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 6, 345–352 (2005).

    Article  CAS  Google Scholar 

  18. Tijsterman, M. & Plasterk, R.H. Dicers at RISC; the mechanism of RNAi. Cell 117, 1–3 (2004).

    Article  CAS  Google Scholar 

  19. Fontenot, J.D. & Rudensky, A.Y. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat. Immunol. 6, 331–337 (2005).

    Article  CAS  Google Scholar 

  20. Singh, B. et al. Control of intestinal inflammation by regulatory T cells. Immunol. Rev. 182, 190–200 (2001).

    Article  CAS  Google Scholar 

  21. Ochs, H.D., Ziegler, S.F. & Torgerson, T.R. FOXP3 acts as a rheostat of the immune response. Immunol. Rev. 203, 156–164 (2005).

    Article  CAS  Google Scholar 

  22. Mellor, A.L. et al. Cutting edge: induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. J. Immunol. 171, 1652–1655 (2003).

    Article  CAS  Google Scholar 

  23. Taniguchi, T. & Minami, Y. The IL-2/IL-2 receptor system: a current overview. Cell 73, 5–8 (1993).

    Article  CAS  Google Scholar 

  24. Yamasaki, S., Takamatsu, M. & Iwashima, M. The kinase, SH3, and SH2 domains of Lck play critical roles in T-cell activation after ZAP-70 membrane localization. Mol. Cell. Biol. 16, 7151–7160 (1996).

    Article  CAS  Google Scholar 

  25. Gavin, M.A., Clarke, S.R., Negrou, E., Gallegos, A. & Rudensky, A. Homeostasis and anergy of CD4(+)CD25(+) suppressor T cells in vivo. Nat. Immunol. 3, 33–41 (2002).

    Article  CAS  Google Scholar 

  26. Tang, Q. et al. In vitro–expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J. Exp. Med. 199, 1455–1465 (2004).

    Article  CAS  Google Scholar 

  27. Horwitz, D.A., Zheng, S.G. & Gray, J.D. The role of the combination of IL-2 and TGF-β or IL-10 in the generation and function of CD4+ CD25+ and CD8+ regulatory T cell subsets. J. Leukoc. Biol. 74, 471–478 (2003).

    Article  CAS  Google Scholar 

  28. Mage, M.G. In vitro assays for mouse lymphocyte function. In Current Protocols in Immunology (eds., Coligan, J.E., Kruisbeek, A.M., Margulies, D.H., Shevach, E.M. & Strober, S.) 3.5.1–3.5.6 (John Wiley & Sons, Indianapolis, 1993).

    Google Scholar 

  29. Iwashima, M. et al. Genetic evidence for Shc requirement in TCR-induced c-Rel nuclear translocation and IL-2 expression. Proc. Natl. Acad. Sci. USA 99, 4544–4549 (2002)..

    Article  CAS  Google Scholar 

  30. Zheng, X., Ray, S. & Bollag, W.B. Modulation of phospholipase D–mediated phosphatidylglycerol formation by differentiating agents in primary mouse epidermal keratinocytes. Biochim. Biophys. Acta 1643, 25–36 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Weiss and D.H. Munn for critical reading of the manuscript, T. Tada for encouragement, M. Frohman and Y. Kanaho for reagents, MCG flow Cytometry Core and Histology core for support, and A. Sridhar, M. Takezaki and D. McCool for assistance. This work is supported by US National Institutes of Health grants AI055022 and AI049398 (to M.I), and AR45212 and HL70046 (to W.B.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makio Iwashima.

Ethics declarations

Competing interests

N.S. and M.I. are authors of a pending patent (application number US 60-625403), which covers the work described in this article.

Supplementary information

Supplementary Fig. 1

Original pictures of western blots and agarose gels used in this study. (PDF 656 kb)

Supplementary Fig. 2

Transfection efficiency of siRNA construct against PLD and its effect. (PDF 341 kb)

Supplementary Fig. 3

Effect of 1-but on T-cell division and death. (PDF 658 kb)

Supplementary Fig. 4

A schematic presentation of the procedure utilized to enrich T cells in the presence of 1-alcohol. (PDF 504 kb)

Supplementary Fig. 5

Role of cytokines in CD41-but mediated T cell suppression. (PDF 242 kb)

Supplementary Fig. 6

Tissue architectures of recipient mice of scurfy and BM3 T cells. (JPG 297 kb)

Supplementary Fig. 7

Effect of 1-but treatment on CD69 expression and cytokine production by sorted CD4 T cells. (PDF 911 kb)

Supplementary Methods (PDF 75 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, N., Seki, Y., Takami, M. et al. Enrichment of regulatory CD4+CD25+ T cells by inhibition of phospholipase D signaling. Nat Methods 3, 629–636 (2006). https://doi.org/10.1038/nmeth903

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth903

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing