Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Removal of a time barrier for high-resolution multidimensional NMR spectroscopy

Abstract

We introduce the recursive multidimensional decomposition (R-MDD) method to speed recording of high-resolution NMR spectra. The measurement time is logarithmically dependent on the sizes of indirect spectral dimensions. R-MDD has the sensitivity and resolution advantages of optimized nonuniform acquisition schemes and is applicable to all types of biomolecular spectra. We demonstrated it for triple resonance experiments on three globular proteins (ubiquitin, azurin and the barstar-barnase complex) of 8–22 kDa.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2: High resolution in the R-MDD reconstructions.

References

  1. Ernst, R.R. Angew. Chem. Int. Edn. Engl. 31, 805–823 (1992).

    Article  Google Scholar 

  2. Montelione, G.T., Zheng, D.Y., Huang, Y.P.J., Gunsalus, K.C. & Szyperski, T. Nat. Struct. Biol. 7, 982–985 (2000).

    CAS  Article  Google Scholar 

  3. Yee, A.A. et al. J. Am. Chem. Soc. 127, 16512–16517 (2005).

    CAS  Article  Google Scholar 

  4. Liu, G. et al. Proc. Natl. Acad. Sci. USA 102, 10487–10492 (2005).

    CAS  Article  Google Scholar 

  5. Rovnyak, D., Hoch, J.C., Stern, A.S. & Wagner, G. J. Biomol. NMR 30, 1–10 (2004).

    CAS  Article  Google Scholar 

  6. Mandelshtam, V.A., Taylor, H.S. & Shaka, A.J. J. Magn. Reson. 133, 304–312 (1998).

    CAS  Article  Google Scholar 

  7. Atreya, H.S. & Szyperski, T. Proc. Natl. Acad. Sci. USA 101, 9642–9647 (2004).

    CAS  Article  Google Scholar 

  8. Freeman, R. & Kupce, E. Concepts Magn. Reson. 23A, 63–75 (2004).

    CAS  Article  Google Scholar 

  9. Hoch, J.C. & Stern, A.S. NMR Data Processing (Wiley-Liss, New York, 1996).

  10. Stern, A.S. & Hoch, A.S. Maximum entropy reconstruction in NMR. in Encyclopedia of NMR, Vol. 8 (ed. Harris, D. & Grant, R.) (John Wiley & Sons, Chichester, UK, 1996).

    Google Scholar 

  11. Orekhov, V.Y., Ibraghimov, I. & Billeter, M. J. Biomol. NMR 27, 165–173 (2003).

    CAS  Article  Google Scholar 

  12. Tugarinov, V., Kay, L.E., Ibraghimov, I. & Orekhov, V.Y. J. Am. Chem. Soc. 127, 2767–2775 (2005).

    CAS  Article  Google Scholar 

  13. Kruskal, J.B. Linear Algebra Appl. 18, 95–138 (1977).

    Article  Google Scholar 

  14. van de Kamp, M. et al. Biochemistry 31, 10194–10207 (1992).

    CAS  Article  Google Scholar 

  15. Altieri, A.S. & Byrd, R.A. Curr. Opin. Struct. Biol. 14, 547–553 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Swedish Foundation for Strategic Research (A3 04:160d), the Swedish National Allocation Committee (SNIC 3/04-44), the Swedish Research Council (621-2005-2951) and the Wenner-Gren Foundation. The authors are grateful to G. Karlsson and S. Grzesiek for the azurin and ubiquitin samples.

Author information

Authors and Affiliations

Authors

Contributions

V.Yu.O. and V.J., idea of R-MDD algorithm and its demonstration for NMR; I.I., development of MDD algorithm for real and complex multidimensional sparse matricies.

Corresponding author

Correspondence to Vladislav Yu Orekhov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Optimal sampling schedule for acquisition of high-resolution 3D HNCA spectrum of azurin. (PDF 154 kb)

Supplementary Fig. 2

Comparison with the reference of individual resonance reconstructions for 3D HNCA of azurin. (PDF 1337 kb)

Supplementary Fig. 3

Comparison with the reference of individual resonance reconstructions for 3D HNCO of barnase in complex with barstar. (PDF 475 kb)

Supplementary Fig. 4

Comparison with the reference of individual resonance reconstructions for 3D HNCO and 3D HNcoCA of ubiquitin. (PDF 673 kb)

Supplementary Fig. 5

Accuracy of intensities and peak positions between 6% data reconstruction and reference spectra for all backbone 3D HNCA correlations of protein azurin. (PDF 89 kb)

Supplementary Table 1

The samples and spectral parameters of the 3D experiments. (PDF 62 kb)

Supplementary Methods (PDF 181 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jaravine, V., Ibraghimov, I. & Yu Orekhov, V. Removal of a time barrier for high-resolution multidimensional NMR spectroscopy. Nat Methods 3, 605–607 (2006). https://doi.org/10.1038/nmeth900

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth900

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing