Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic proteomics in individual human cells uncovers widespread cell-cycle dependence of nuclear proteins


We examined cell cycle–dependent changes in the proteome of human cells by systematically measuring protein dynamics in individual living cells. We used time-lapse microscopy to measure the dynamics of a random subset of 20 nuclear proteins, each tagged with yellow fluorescent protein (YFP) at its endogenous chromosomal location. We synchronized the cells in silico by aligning protein dynamics in each cell between consecutive divisions. We observed widespread (40%) cell-cycle dependence of nuclear protein levels and detected previously unknown cell cycle–dependent localization changes. This approach to dynamic proteomics can aid in discovery and accurate quantification of the extensive regulation of protein concentration and localization in individual living cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Creation of a library of CD-tagged proteins.
Figure 2: In silico synchronization of individual cells.
Figure 3: Nuclear accumulation as a function of cell cycle for 20 nuclear proteins.
Figure 4: Cell cycle–dependent translocation of proteins.

Similar content being viewed by others


  1. Andersen, J.S. et al. Nucleolar proteome dynamics. Nature 433, 77–83 (2005).

    Article  CAS  Google Scholar 

  2. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    Article  CAS  Google Scholar 

  3. Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934 (2001).

    Article  CAS  Google Scholar 

  4. Rosenfeld, N., Young, J.W., Alon, U., Swain, P.S. & Elowitz, M.B. Gene regulation at the single-cell level. Science 307, 1962–1965 (2005).

    Article  CAS  Google Scholar 

  5. Perlman, Z.E. et al. Multidimensional drug profiling by automated microscopy. Science 306, 1194–1198 (2004).

    Article  CAS  Google Scholar 

  6. Bannasch, D. et al. LIFEdb: a database for functional genomics experiments integrating information from external sources, and serving as a sample tracking system. Nucleic Acids Res. 32, D505–D508 (2004).

    Article  CAS  Google Scholar 

  7. Gerlich, D., Beaudouin, J., Gebhard, M., Ellenberg, J. & Eils, R. Four-dimensional imaging and quantitative reconstruction to analyse complex spatiotemporal processes in live cells. Nat. Cell Biol. 3, 852–855 (2001).

    Article  CAS  Google Scholar 

  8. Tvarusko, W. et al. Time-resolved analysis and visualization of dynamic processes in living cells. Proc. Natl. Acad. Sci. USA 96, 7950–7955 (1999).

    Article  CAS  Google Scholar 

  9. Conrad, C. et al. Automatic identification of subcellular phenotypes on human cell arrays. Genome Res. 14, 1130–1136 (2004).

    Article  CAS  Google Scholar 

  10. Kumar, A. et al. Subcellular localization of the yeast proteome. Genes Dev. 16, 707–719 (2002).

    Article  CAS  Google Scholar 

  11. Huh, W.K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).

    Article  CAS  Google Scholar 

  12. Chen, X. & Murphy, R.F. Objective clustering of proteins based on subcellular location patterns. J. Biomed. Biotechnol. 2005, 87–95 (2005).

    Article  Google Scholar 

  13. Menges, M., de Jager, S.M., Gruissem, W. & Murray, J.A. Global analysis of the core cell-cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell-cycle control. Plant J. 41, 546–566 (2005).

    Article  CAS  Google Scholar 

  14. Spellman, P.T. et al. Comprehensive identification of cell-cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998).

    Article  CAS  Google Scholar 

  15. Cho, R.J. et al. A genome-wide transcriptional analysis of the mitotic cell-cycle. Mol. Cell 2, 65–73 (1998).

    Article  CAS  Google Scholar 

  16. Rustici, G. et al. Periodic gene expression program of the fission yeast cell-cycle. Nat. Genet. 36, 809–817 (2004).

    Article  CAS  Google Scholar 

  17. Cho, R.J. et al. Transcriptional regulation and function during the human cell-cycle. Nat. Genet. 27, 48–54 (2001).

    Article  CAS  Google Scholar 

  18. Whitfield, M.L. et al. Identification of genes periodically expressed in the human cell-cycle and their expression in tumors. Mol. Biol. Cell 13, 1977–2000 (2002).

    Article  CAS  Google Scholar 

  19. Jarvik, J.W. et al. In vivo functional proteomics: mammalian genome annotation using CD-tagging. Biotechniques 33, 852–860 (2002).

    Article  CAS  Google Scholar 

  20. Jarvik, J.W., Adler, S.A., Telmer, C.A., Subramaniam, V. & Lopez, A.J. CD-tagging: a new approach to gene and protein discovery and analysis. Biotechniques 20, 896–904 (1996).

    Article  CAS  Google Scholar 

  21. Scheel, J.R., Ray, J., Gage, F.H. & Barlow, C. Quantitative analysis of gene expression in living adult neural stem cells by gene trapping. Nat. Methods 2, 363–370 (2005).

    Article  CAS  Google Scholar 

  22. Whitney, M. et al. A genome-wide functional assay of signal transduction in living mammalian cells. Nat. Biotechnol. 16, 1329–1333 (1998).

    Article  CAS  Google Scholar 

  23. Friedrich, G. & Soriano, P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5, 1513–1523 (1991).

    Article  CAS  Google Scholar 

  24. Skarnes, W.C., Auerbach, B.A. & Joyner, A.L. A gene trap approach in mouse embryonic stem cells: the lacZ reported is activated by splicing, reflects endogenous gene expression, and is mutagenic in mice. Genes Dev. 6, 903–918 (1992).

    Article  CAS  Google Scholar 

  25. Clyne, P.J., Brotman, J.S., Sweeney, S.T. & Davis, G. Green fluorescent protein tagging Drosophila proteins at their native genomic loci with small P elements. Genetics 165, 1433–1441 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Morin, X., Daneman, R., Zavortink, M. & Chia, W. A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc. Natl. Acad. Sci. USA 98, 15050–15055 (2001).

    Article  CAS  Google Scholar 

  27. Zambrowicz, B.P. et al. Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature 392, 608–611 (1998).

    Article  CAS  Google Scholar 

  28. Nomura, M. Ribosomal RNA Genes, RNA Polymerases, Nucleolar Structures, and Synthesis of rRNA in the Yeast Saccharomyces cerevisiae (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2001).

    Book  Google Scholar 

  29. Muratani, M. et al. Metabolic-energy-dependent movement of PML bodies within the mammalian cell nucleus. Nat. Cell Biol. 4, 106–110 (2002).

    Article  CAS  Google Scholar 

  30. Shedden, K. & Cooper, S. Analysis of cell-cycle-specific gene expression in human cells as determined by microarrays and double-thymidine block synchronization. Proc. Natl. Acad. Sci. USA 99, 4379–4384 (2002).

    Article  CAS  Google Scholar 

  31. Liron, Y., Paran, Y., Zatorsky, N.G., Geiger, B. & Kam, Z. Laser autofocusing system for high-resolution cell biological imaging. J. Microsc. 221, 145–151 (2006).

    Article  CAS  Google Scholar 

  32. Ghosh, R.N. et al. Quantitative cell-based high-content screening for vasopressin receptor agonists using transfluor technology. J. Biomol. Screen. 10, 476–484 (2005).

    Article  CAS  Google Scholar 

Download references


We thank Quantomix for plasmid construction; Z. Kam for microscopy guidance; B. Zimmerman for cytoskeleton staining; E. Ariel and A. Sharp from the Weizmann flow cytometry unit for assistance, and M. Springer, P. Bordalo, O. Zuk and members of the Alon lab for discussions of the manuscript. We thank the Kahn Family Foundation and the Israel Science Foundation for support. R.M. thanks the Horowitz Complexity Science Foundation for support. A.E.C. thanks the Novartis Life Science Foundation for support.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Uri Alon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Integration positions of the YFP CD-tag. (PDF 107 kb)

Supplementary Fig. 2

Distribution of cell cycle lengths for 20 nuclear clones. (PDF 61 kb)

Supplementary Fig. 3

Determination of the relative durations of cell cycle phases. (PDF 91 kb)

Supplementary Fig. 4

Automatic segmentation based on fluorescence levels in the nuclei. (PDF 135 kb)

Supplementary Fig. 5

Raw accumulation measurements without any correction. (PDF 84 kb)

Supplementary Fig. 6

Synchrogram before cell centering and rotation, and before elimination of neighboring cells. (PDF 441 kb)

Supplementary Table 1

Localization of CD-tagged clones compared to previous studies. (PDF 108 kb)

Supplementary Video 1

Panel of 9 proteins, shown for one complete division, approximately 20 hours. Protein identities (localizations), first row, left to right: MSN (cytoplasm), BSG (plasma membrane), ATP1A1 (plasma membrane). Second row: FBL (nucleoli), RPL4 (cytoplasm and nucleoli), RTN4 (endoplasmic reticulum). Third row: H2AFV (DNA bound), USP7 (nucleus, nuclear bodies), LMNB1 (nuclear membrane). (MPG 1091 kb)

Supplementary Video 2

Histone H2AFV transmitted light. Duration shown: 42 hours. (MPG 4861 kb)

Supplementary Video 3

Histone H2AFV fluorescence. Duration shown: 42 hours. (MPG 2360 kb)

Supplementary Video 4

USP7 translocation to nuclear bodies. Duration shown: 42 hours. (MPG 5660 kb)

Supplementary Methods (PDF 129 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigal, A., Milo, R., Cohen, A. et al. Dynamic proteomics in individual human cells uncovers widespread cell-cycle dependence of nuclear proteins. Nat Methods 3, 525–531 (2006).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing