Review Article | Published:

Detection and localization of single molecular recognition events using atomic force microscopy

Abstract

Because of its piconewton force sensitivity and nanometer positional accuracy, the atomic force microscope (AFM) has emerged as a powerful tool for exploring the forces and the dynamics of the interaction between individual ligands and receptors, either on isolated molecules or on cellular surfaces. These studies require attaching specific biomolecules or cells on AFM tips and on solid supports and measuring the unbinding forces between the modified surfaces using AFM force spectroscopy. In this review, we describe the current methodology for molecular recognition studies using the AFM, with an emphasis on strategies available for preparing AFM tips and samples, and on procedures for detecting and localizing single molecular recognition events.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Turner, A.P. Biosensors—sense and sensitivity. Science 290, 1315–1317 (2000).

  2. 2

    Binnig, G., Quate, C.F. & Gerber, C. Atomic Force Microscope. Phys. Rev. Lett. 56, 930–933 (1986).

  3. 3

    Jena, B.P. & Hörber, J.K. Atomic Force Microscopy in Cell Biology, Methods in Cell Biology Vol. 68. (Academic Press, San Diego, 2002).

  4. 4

    Engel, A. & Müller, D.J. Observing single biomolecules at work with the atomic force microscope. Nat. Struct. Biol. 7, 715–718 (2000).

  5. 5

    Clausen-Schaumann, H., Seitz, M., Krautbauer, R. & Gaub, H.E. Force spectroscopy with single bio-molecules. Curr. Opin. Chem. Biol. 4, 524–530 (2000).

  6. 6

    Fisher, T.E., Marszalek, P.E. & Fernandez, J.M. Stretching single molecules into novel conformations using the atomic force microscope. Nat. Struct. Biol. 7, 719–724 (2000).

  7. 7

    Florin, E.L., Moy, V.T. & Gaub, H.E. Adhesion forces between individual ligand-receptor pairs. Science 264, 415–417 (1994).

  8. 8

    Lee, G.U., Chrisey, L.A. & Colton, R.J. Direct measurement of the forces between complementary strands of DNA. Science 266, 771–773 (1994).

  9. 9

    Hinterdorfer, P., Baumgartner, W., Gruber, H.J., Schilcher, K. & Schindler, H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc. Natl. Acad. Sci. USA 93, 3477–3481 (1996).

  10. 10

    Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M. & Gaub, H.E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

  11. 11

    Oberhauser, A.F., Marszalek, P.E., Erickson, H.P. & Fernandez, J.M. The molecular elasticity of the extracellular matrix protein tenascin. Nature 393, 181–185 (1998).

  12. 12

    Rief, M., Clausen-Schaumann, H. & Gaub, H.E. Sequence-dependent mechanics of single DNA molecules. Nat. Struct. Biol. 6, 346–349 (1999).

  13. 13

    Benoit, M., Gabriel, D., Gerisch, G. & Gaub, H.E. Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat. Cell Biol. 2, 313–317 (2000).

  14. 14

    Lee, G.U., Kidwell, D.A. & Colton, R.J. Sensing discrete streptavidin-biotin interactions with atomic force microscopy. Langmuir 10, 354–357 (1994).

  15. 15

    Fritz, J., Katopidis, A.G., Kolbinger, F. & Anselmetti, D. Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. Proc. Natl. Acad. Sci. USA 95, 12283–12288 (1998).

  16. 16

    Grandbois, M., Beyer, M., Rief, M., Clausen-Schaumann, H. & Gaub, H.E. How strong is a covalent bond? Science 283, 1727–1730 (1999).

  17. 17

    Harada, Y., Kuroda, M. & Ishida, A. Specific and quantized antigen-antibody interaction measured by atomic force microscopy. Langmuir 16, 708–715 (2000).

  18. 18

    Touhami, A., Hoffmann, B., Vasella, A., Denis, F.A. & Dufrêne, Y.F. Probing specific lectin-carbohydrate interactions using atomic force microscopy imaging and force measurements. Langmuir 19, 1745–1751 (2003).

  19. 19

    Bustanji, Y. et al. Dynamics of the interaction between a fibronectin molecule and a living bacterium under mechanical force. Proc. Natl. Acad. Sci. USA 100, 13292–13297 (2003).

  20. 20

    Dammer, U. et al. Binding strength between cell adhesion proteoglycans measured by atomic force microscopy. Science 267, 1173–1175 (1995).

  21. 21

    Grandbois, M., Dettmann, W., Benoit, M. & Gaub, H.E. Affinity imaging of red blood cells using an atomic force microscope. J. Histochem. Cytochem. 48, 719–724 (2000).

  22. 22

    Touhami, A., Hoffmann, B., Vasella, A., Denis, F.A. & Dufrêne, Y.F. Aggregation of yeast cells: direct measurement of discrete lectin-carbohydrate interactions. Microbiol. SGM 149, 2873–2878 (2003).

  23. 23

    Kienberger, F. et al. Recognition force spectroscopy studies of the NTA-His6 bond. Single Mol. 1, 59–65 (2000).

  24. 24

    Schmitt, L., Ludwig, M., Gaub, H.E. & Tampé, R. A metal-chelating microscopy tip as a new toolbox for single-molecule experiments by atomic force microscopy. Biophys. J. 78, 3275–3285 (2000).

  25. 25

    Dupres, V. et al. Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nat. Methods 2, 515–520 (2005).

  26. 26

    Berquand, A. et al. Antigen binding forces of single antilysozyme Fv fragments explored by atomic force microscopy. Langmuir 21, 5517–5523 (2005).

  27. 27

    Lee, G. et al. Nanospring behaviour of ankyrin repeats. Nature 440, 246–249 (2006).

  28. 28

    Hinterdorfer, P., Schilcher, K., Baumgartner, W., Gruber, H.J. & Schindler, H. A mechanistic study of the dissociation of individual antibody-antigen pairs by atomic force microscopy. Nanobiology 4, 39–50 (1998).

  29. 29

    Allen, S. et al. Spatial mapping of specific molecular recognition sites by atomic force microscopy. Biochemistry 36, 7457–7463 (1997).

  30. 30

    Ros, R. et al. Antigen binding forces of individually addressed single-chain Fv antibody molecules. Proc. Natl. Acad. Sci. USA 95, 7402–7405 (1998).

  31. 31

    Strunz, T., Oroszlan, K., Schäfer, R. & Güntherodt, H.-J. Dynamic force spectroscopy of single DNA molecules. Proc. Natl. Acad. Sci. USA 96, 11277–11282 (1999).

  32. 32

    Yersin, A. et al. Interactions between synaptic vesicle fusion proteins explored by atomic force microscopy. Proc. Natl. Acad. Sci. USA 100, 8736–8741 (2003).

  33. 33

    Haselgrübler, T., Amerstorfer, A., Schindler, H. & Gruber, H.J. Synthesis and applications of a new poly(ethylene glycol) derivative for the crosslinking of amines with thiols. Bioconjugate Chem. 6, 242–248 (1995).

  34. 34

    Riener, C.K. et al. Bioconjugation for biospecific detection of single molecules in atomic force microscopy (AFM) and in single dye tracing (SDT). Recent Res. Devel. Bioconj. Chem. 1, 133–149 (2002).

  35. 35

    Raab, A. et al. Antibody recognition imaging by force microscopy. Nat. Biotechnol. 17, 902–905 (1999).

  36. 36

    Zara, J.J. et al. A carbohydrate-directed heterobifunctional cross-linking reagent for the synthesis of immunoconjugates. Anal. Biochem. 194, 156–162 (1991).

  37. 37

    Carlsson, J., Drevin, H. & Axen, R. Protein thiolation and reversible protein-protein conjugation. N-Succinimidyl 3-(2-pyridyldithio)propionate, a new heterobifunctional reagent. J. Biochem. 173, 723–737 (1978).

  38. 38

    Li, F., Redick, S.D., Erickson, H.P. & Moy, V.T. Force measurements of the α5β1 integrin-fibronectin interaction. Biophys. J. 84, 1252–1262 (2003).

  39. 39

    Lower, S.K., Hochella, M.F. & Beveridge, T.J. Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and α-FeOOH. Science 292, 1360–1363 (2001).

  40. 40

    Bowen, W.R., Lovitt, R.W. & Wright, C.J. Atomic force microscopy study of the adhesion of Saccharomyces cerevisiae. J. Coll. Interf. Sci. 237, 54–61 (2001).

  41. 41

    Razatos, A., Ong, Y.-L., Sharma, M.M. & Georgiou, G. Molecular determinants of bacterial adhesion monitored by atomic force microscopy. Proc. Natl. Acad. Sci. USA 95, 11059–11064 (1998).

  42. 42

    Scheuring, S. & Sturgis, J.N. Chromatic adaptation of photosynthetic membranes. Science 309, 484–487 (2005).

  43. 43

    Wagner, P., Hegner, M., Kernen, P., Zaugg, F. & Semenza, G. Covalent immobilization of native biomolecules onto Au(111) via N-hydroxysuccinimide ester functionalized self-assembled monolayers for scanning probe microscopy. Biophys. J. 70, 2052–2066 (1996).

  44. 44

    Wagner, P. Immobilization strategies for biological scanning probe microscopy. FEBS Lett. 430, 112–115 (1998).

  45. 45

    Karrasch, S., Dolder, M., Schabert, F., Ramsden, J. & Engel, A. Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution. Biophys. J. 65, 2437–2446 (1993).

  46. 46

    Klein, D.C. et al. Covalent immobilization of single proteins on mica for molecular recognition force microscopy. ChemPhysChem 4, 1367–1371 (2003).

  47. 47

    Wagner, P., Hegner, M., Guntherodt, H.-J. & Semenza, G. Formation and in situ modification of monolayers chemisorbed on ultraflat template-stripped gold surfaces. Langmuir 11, 3867–3875 (1995).

  48. 48

    Radmacher, M., Tillmann, R.W., Fritz, M. & Gaub, H.E. From molecules to cells: imaging soft samples with the atomic force microscope. Science 257, 1900–1905 (1992).

  49. 49

    LeGrimellec, C. et al. Imaging of the surface of living cells by low-force contact-mode atomic force microscopy. Biophys. J. 75, 695–703 (1998).

  50. 50

    Almqvist, N. et al. Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties. Biophys. J. 86, 1753–1762 (2004).

  51. 51

    Stroh, C.M. et al. Detection of HSP60 on the membrane surface of stressed human endothelial cells (HUVECs) by atomic force and confocal microscopy. J. Cell Sci. 118, 1587–1594 (2005).

  52. 52

    Schilcher, K., Hinterdorfer, P., Gruber, H.J. & Schindler, H. A non-invasive method for the tight anchoring of cells for scanning force microscopy. Cell Biol. Int. 21, 769–778 (1997).

  53. 53

    Le Grimellec, C. et al. High-resolution three-dimensional imaging of the lateral plasma membrane of cochlear outer hair cells by atomic force microscopy. J. Comp. Neurol. 451, 62–69 (2002).

  54. 54

    Schaer-Zammaretti, P. & Ubbink, J. Imaging of lactic acid bacteria with AFM - elasticity and adhesion maps and their relationship to biological and structural data. Ultramicroscopy 97, 199–208 (2003).

  55. 55

    Gad, M., Itoh, A. & Ikai, A. Mapping cell wall polysaccharides of living microbial cells using atomic force microscopy. Cell Biol. Int. 21, 697–706 (1997).

  56. 56

    Camesano, T.A., Natan, M.J. & Logan, B.E. Observation of changes in bacterial cell morphology using tapping mode atomic force microscopy. Langmuir 16, 4563–4572 (2000).

  57. 57

    Kasas, S. & Ikai, A. A method for anchoring round shaped cells for atomic force microscope imaging. Biophys. J. 68, 1678–1680 (1995).

  58. 58

    Dufrêne, Y.F., Boonaert, C.J., Gerin, P.A., Asther, M. & Rouxhet, P.G. Direct probing of the surface ultrastructure and molecular interactions of dormant and germinating spores of Phanerochaete chrysosporium. J. Bacteriol. 181, 5350–5354 (1999).

  59. 59

    Bongrand, P., Capo, C., Mege, J.-L. & Benoliel, A.-M. Use of hydrodynamic flows to study cell adhesion. In Physical basis of cell adhesion (Bongrand, P., ed.) 125–156 (CRC Press, Boca Raton, Florida, 1988).

  60. 60

    Leckband, D.E., Israelachvili, J.N., Schmitt, F.J. & Knoll, W. Long-range attraction and molecular rearrangements in receptor-ligand interactions. Science 255, 1419–1421 (1992).

  61. 61

    Merkel, R., Nassoy, P., Leung, A., Ritchie, K. & Evans, E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53 (1999).

  62. 62

    Ashkin, A. Optical trapping and manipulation of neutral particles using lasers. Proc. Natl. Acad. Sci. USA 94, 4853–4860 (1997).

  63. 63

    Viani, M.B. et al. Small cantilevers for force spectroscopy of single molecules. J. Appl. Phys. 86, 2258–2262 (1999).

  64. 64

    Burnham, N.A. et al. Comparison of calibration methods for atomic-force microscopy cantilevers. Nanotechnology 14, 1–6 (2003).

  65. 65

    Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541–1555 (1997).

  66. 66

    Zhang, X.H., Bogorin, D.F. & Moy, V.T. Molecular basis of the dynamic strength of the sialyl Lewis X-selectin interaction. ChemPhysChem 5, 175–182 (2004).

  67. 67

    Bell, G.I. Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978).

  68. 68

    Strunz, T., Oroszlan, K. & Schumakovitch, I. Güntherodt, H.-G. & Hegner, M. Model energy landscapes and the force-induced dissociation of ligand-receptor bonds. Biophys. J. 79, 1206–1212 (2000).

  69. 69

    Nevo, R. et al. A molecular switch between alternative conformational states in the complex of Ran and importin β1. Nat. Struct. Biol. 10, 553–557 (2003).

  70. 70

    Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

  71. 71

    Cabeen, M.T. & Jacobs-Wagner, C. Bacterial cell shape. Nat. Rev. Microbiol. 3, 601–610 (2005).

  72. 72

    Ludwig, M., Dettmann, W. & Gaub, H.E. Atomic force microscope imaging contrast based on molecular recognition. Biophys. J. 72, 445–448 (1997).

  73. 73

    Lehenkari, P.P., Charras, G.T., Nykänen, A. & Horton, M.A. Adapting atomic force microscopy for cell biology. Ultramicroscopy 82, 289–295 (2000).

  74. 74

    Raab, A. et al. Antibody recognition imaging by force microscopy. Nat. Biotechnol. 17, 902–905 (1999).

  75. 75

    Han, W., Lindsay, S.M. & Jing, T. A magnetically driven oscillating probe microscope for operation in liquid. Appl. Phys. Lett. 69, 1–3 (1996).

  76. 76

    Han, W., Lindsay, S.M., Dlakic, M. & Harrington, R.E. Kinked DNA. Nature 386, 563 (1997).

  77. 77

    Stroh, C.M. et al. Simultaneous topography and recognition imaging using force microscopy. Biophys. J. 87, 1981–1990 (2004).

  78. 78

    Stroh, C. et al. Single-molecule recognition imaging microscopy. Proc. Natl. Acad. Sci. USA 101, 12503–12507 (2004).

  79. 79

    Ebner, A. et al. Localization of single avidin-biotin interactions using simultaneous topography and molecular recognition imaging. ChemPhysChem 6, 897–900 (2005).

  80. 80

    Wong, S.S., Joselevich, E., Woolley, A.T., Cheung, C.L. & Lieber, C.M. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394, 52–55 (1998).

  81. 81

    Fritz, J. et al. Translating biomolecular recognition into nanomechanics. Science 288, 316–318 (2000).

  82. 82

    Wu, G. et al. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat. Biotechnol. 19, 856–860 (2001).

  83. 83

    Ando, T. et al. A high-speed atomic force microscope for studying biological macromolecules. Proc. Natl. Acad. Sci. USA 98, 12468–12472 (2001).

  84. 84

    Humphris, A.D., Hobbs, J.K. & Miles, M.J. Ultrahigh-speed scanning near-field optical microscopy capable of over 100 frames per second. Appl. Phys. Lett. 83, 6–8 (2003).

  85. 85

    Janovjak, H. Struckmeier & Müller, D.J. Hydrodynamic effects in fast AFM single-molecule force measurements. Eur. Biophys. J. 34, 91–96 (2005).

Download references

Acknowledgements

Our work is supported by Belgian Funds (National Foundation for Scientific Research (FNRS), Fonds Spéciaux de Recherche (Université Catholique de Louvain), Interuniversity Poles of Attraction Programme (Federal Office for Scientific, Technical and Cultural Affairs), Région wallonne), by the Austrian National Science Fund, by the Austrian Nano and GENAU initiative from the Austrian Ministery of education, science and culture, and by the FP6 of the European Union. Y.F.D. is a Research Associate of the FNRS.

Author information

Competing interests

The authors declare no competing financial interests.

Correspondence to Peter Hinterdorfer or Yves F Dufrêne.

Rights and permissions

Reprints and Permissions

About this article

Further reading

Figure 1: General principle of atomic force microscopy.
Figure 2: Schematics of surface chemistries commonly used for modifying AFM tips for single-molecule recognition studies.
Figure 3: Measurement of molecular recognition interaction forces.
Figure 4: Dynamic force spectroscopy of a single receptor-ligand bond.
Figure 5: Mapping molecular recognition sites on living cells.
Figure 6: Simultaneous topography and recognition imaging (TREC).