Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fluorescence protease protection of GFP chimeras to reveal protein topology and subcellular localization

Abstract

Understanding the cell biology of many proteins requires knowledge of their in vivo topological distribution. Here we describe a new fluorescence-based technique, fluorescence protease protection (FPP), for investigating the topology of proteins and for localizing protein subpopulations within the complex environment of the living cell. In the FPP assay, adapted from biochemical protease protection assays, GFP fusion proteins are used as noninvasive tools to obtain details of protein topology and localization within living cells in a rapid and straightforward manner. To demonstrate the broad applicability of FPP, we used the technique to define the topology of proteins localized to a wide range of organelles including the endoplasmic reticulum (ER), Golgi apparatus, mitochondria, peroxisomes and autophagosomes. The success of the FPP assay in characterizing the topology of the tested proteins within their appropriate compartments suggests this technique has wide applicability in studying protein topology and localization within the cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Extracellular trypsin is unable to enter the interior of intact cells.
Figure 2: Digitonin permeabilization releases the freely diffusible cytosolic content and allows trypsin to access the ER membrane protein CD3δ-CFP.
Figure 3: The FPP assay reveals the topology of the ER membrane protein CD3δ.
Figure 4: FPP assays can be used to determine the topology of membrane proteins localized to the Golgi apparatus and mitochondria.
Figure 5: The FPP assay reveals the localization and orientation of proteins localized to peroxisomes.
Figure 6: Detection of the autophagy substrate GAPDH-RFP in autophagosomes by FPP assay.

Similar content being viewed by others

References

  1. Ott, C.M. & Lingappa, V.R. Integral membrane protein biosynthesis: why topology is hard to predict. J. Cell Sci. 115, 2003–2009 (2002).

    CAS  PubMed  Google Scholar 

  2. Wilkinson, B.M., Critchley, A.J. & Stirling, C.J. Determination of the transmembrane topology of yeast Sec61p, an essential component of the endoplasmic reticulum translocation complex. J. Biol. Chem. 271, 25590–25597 (1996).

    Article  CAS  Google Scholar 

  3. Chang, X.B., Hou, Y.X., Jensen, T.J. & Riordan, J.R. Mapping of cystic fibrosis transmembrane conductance regulator membrane topology by glycosylation site insertion. J. Biol. Chem. 269, 18572–18575 (1994).

    CAS  PubMed  Google Scholar 

  4. Giraudat, J., Montecucco, C., Bisson, R. & Changeux, J.P. Transmembrane topology of acetylcholine receptor subunits probed with photoreactive phospholipids. Biochemistry 24, 3121–3127 (1985).

    Article  CAS  Google Scholar 

  5. Bogdanov, M., Zhang, W., Xie, J. & Dowhan, W. Transmembrane protein topology mapping by the substituted cysteine accessibility method (SCAM(TM)): application to lipid-specific membrane protein topogenesis. Methods 36, 148–171 (2005).

    Article  CAS  Google Scholar 

  6. Plutner, H., Davidson, H.W., Saraste, J. & Balch, W.E. Morphological analysis of protein transport from the ER to Golgi membranes in digitonin-permeabilized cells: role of the P58 containing compartment. J. Cell Biol. 119, 1097–1116 (1992).

    Article  CAS  Google Scholar 

  7. Wilson, R. et al. The translocation, folding, assembly and redox-dependent degradation of secretory and membrane proteins in semi-permeabilized mammalian cells. Biochem. J. 307, 679–687 (1995).

    Article  CAS  Google Scholar 

  8. Lorenz, H., Windl, O. & Kretzschmar, H.A. Cellular phenotyping of secretory and nuclear prion proteins associated with inherited prion diseases. J. Biol. Chem. 277, 8508–8516 (2002).

    Article  CAS  Google Scholar 

  9. Liscum, L. & Munn, N.J. Intracellular cholesterol transport. Biochim. Biophys. Acta 1438, 19–37 (1999).

    Article  CAS  Google Scholar 

  10. Chen, C., Bonifacino, J.S., Yuan, L.C. & Klausner, R.D. Selective degradation of T cell antigen receptor chains retained in a pre-Golgi compartment. J. Cell Biol. 107, 2149–2161 (1988).

    Article  CAS  Google Scholar 

  11. Cole, N.B. et al. Diffusional mobility of Golgi proteins in membranes of living cells. Science 273, 797–801 (1996).

    Article  CAS  Google Scholar 

  12. Rizzuto, R., Brini, M., Pizzo, P., Murgia, M. & Pozzan, T. Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr. Biol. 5, 635–642 (1995).

    Article  CAS  Google Scholar 

  13. Soukupova, M., Sprenger, C., Gorgas, K., Kunau, W.H. & Dodt, G. Identification and characterization of the human peroxin PEX3. Eur. J. Cell Biol. 78, 357–374 (1999).

    Article  CAS  Google Scholar 

  14. Faber, K.N., Kram, A.M., Ehrmann, M. & Veenhuis, M. A novel method to determine the topology of peroxisomal membrane proteins in vivo using the tobacco etch virus protease. J. Biol. Chem. 276, 36501–36507 (2001).

    Article  CAS  Google Scholar 

  15. Klionsky, D.J. Autophagy. Curr. Biol. 15, R282–R283 (2005).

    Article  CAS  Google Scholar 

  16. Fengsrud, M. et al. Autophagosome-associated variant isoforms of cytosolic enzymes. Biochem. J. 352, 773–781 (2000).

    Article  CAS  Google Scholar 

  17. Cuervo, A.M., Knecht, E., Terlecky, S.R. & Dice, J.F. Activation of a selective pathway of lysosomal proteolysis in rat liver by prolonged starvation. Am. J. Physiol. 269, C1200–C1208 (1995).

    Article  CAS  Google Scholar 

  18. Sooparb, S., Price, S.R., Shaoguang, J. & Franch, H.A. Suppression of chaperone-mediated autophagy in the renal cortex during acute diabetes mellitus. Kidney Int. 65, 2135–2144 (2004).

    Article  CAS  Google Scholar 

  19. Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

    Article  CAS  Google Scholar 

  20. Kirisako, T. et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J. Cell Biol. 151, 263–276 (2000).

    Article  CAS  Google Scholar 

  21. Canfield, V.A. & Levenson, R. Transmembrane organization of the Na,K-ATPase determined by epitope addition. Biochemistry 32, 13782–13786 (1993).

    Article  CAS  Google Scholar 

  22. Hegde, R.S. et al. A transmembrane form of the prion protein in neurodegenerative disease. Science 279, 827–834 (1998).

    CAS  Google Scholar 

  23. Hegde, R.S. et al. Transmissible and genetic prion diseases share a common pathway of neurodegeneration. Nature 402, 822–826 (1999).

    CAS  Google Scholar 

  24. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    Article  CAS  Google Scholar 

  25. Gowda, L.R., Joshi, M.S. & Bhat, S.G. In situ assay of intracellular enzymes of yeast (Kluyveromyces fragilis) by digitonin permeabilization of cell membrane. Anal. Biochem. 175, 531–536 (1988).

    Article  CAS  Google Scholar 

  26. Cordeiro, C. & Freire, A.P. Digitonin permeabilization of Saccharomyces cerevisiae cells for in situ enzyme assay. Anal. Biochem. 229, 145–148 (1995).

    Article  CAS  Google Scholar 

  27. Brown, J.W., Shaw, P.J., Shaw, P. & Marshall, D.F. Arabidopsis nucleolar protein database (AtNoPDB). Nucleic Acids Res. 33, D633–D636 (2005).

    Article  CAS  Google Scholar 

  28. Daley, D.O. et al. Global topology analysis of the Escherichia coli inner membrane proteome. Science 308, 1321–1323 (2005).

    Article  CAS  Google Scholar 

  29. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    Article  CAS  Google Scholar 

  30. Huh, W.K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).

    Article  CAS  Google Scholar 

  31. Liebel, U. et al. A microscope-based screening platform for large-scale functional protein analysis in intact cells. FEBS Lett. 554, 394–398 (2003).

    Article  CAS  Google Scholar 

  32. Natter, K. et al. The spatial organization of lipid synthesis in the yeast Saccharomyces cerevisiae derived from large scale green fluorescent protein tagging and high resolution microscopy. Mol. Cell. Proteomics 4, 662–672 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Wiertz, A.M. Weissman, Y. Ohsumi, M. Raje and P. Kim for providing DNA constructs used in this study. We also thank E.L. Snapp and R.S. Hegde for valuable discussions on cell permeabilization, and the members of the Lippincott-Schwartz laboratory for their support and critical comments on the manuscript. This work was supported by the Intramural Research Program at the US National Institutes of Health in the National Institute of Child Health and Human Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Lippincott-Schwartz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Intracellular organelles remain intact upon incubation with digitonin concentrations routinely used for cell permeabilization. (DOC 3658 kb)

Supplementary Fig. 2

Quantitative analysis of fluorescence intensities of the proteins subjected to FPP assays (DOC 2042 kb)

Supplementary Methods (DOC 59 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenz, H., Hailey, D. & Lippincott-Schwartz, J. Fluorescence protease protection of GFP chimeras to reveal protein topology and subcellular localization. Nat Methods 3, 205–210 (2006). https://doi.org/10.1038/nmeth857

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth857

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing