Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A single-molecule method for the quantitation of microRNA gene expression

Abstract

MicroRNAs (miRNA) are short endogenous noncoding RNA molecules that regulate fundamental cellular processes such as cell differentiation, cell proliferation and apoptosis through modulation of gene expression. Critical to understanding the role of miRNAs in this regulation is a method to rapidly and accurately quantitate miRNA gene expression. Existing methods lack sensitivity, specificity and typically require upfront enrichment, ligation and/or amplification steps. The Direct miRNA assay hybridizes two spectrally distinguishable fluorescent locked nucleic acid (LNA)-DNA oligonucleotide probes to the miRNA of interest, and then tagged molecules are directly counted on a single-molecule detection instrument. In this study, we show the assay is sensitive to femtomolar concentrations of miRNA (500 fM), has a three-log linear dynamic range and is capable of distinguishing among miRNA family members. Using this technology, we quantified expression of 45 human miRNAs within 16 different tissues, yielding a quantitative differential expression profile that correlates and expands upon published results.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic diagram of our five laser single molecule detection platform.
Figure 2: The single-molecule two-color coincident detection strategy.
Figure 3: The Direct miRNA assay is sensitive to 500 fM miRNA.
Figure 4: The Direct miRNA assay can be used to specifically detect the target miRNA.
Figure 5: A human miRNA expression profile that both characterizes and quantifies the tissue-specific expression of 45 different miRNAs within 16 different tissues.

Similar content being viewed by others

References

  1. Lee, R.C., Feinbaum, R.L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  Google Scholar 

  2. Reinhart, B. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).

    Article  CAS  Google Scholar 

  3. Houbaviy, H.B., Murray, M.F. & Sharp, P.A. Embryonic stem cell-specific MicroRNAs. Dev. Cell 5, 351–358 (2003).

    Article  CAS  Google Scholar 

  4. Chen, C.Z., Li, L., Lodish, H.F. & Bartel, D.P. MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–86 (2004).

    Article  CAS  Google Scholar 

  5. Brennecke, J., Hipfner, D.R., Stark, A., Russell, R.B. & Cohen, S.M. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36 (2003).

    Article  CAS  Google Scholar 

  6. Michael, M.Z., O' Connor, S.M., van Holst Pellekaan, N.G., Young, G.P. & James, R.J. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res. 1, 882–891 (2003).

    CAS  PubMed  Google Scholar 

  7. Calin, G.A. et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl. Acad. Sci. USA 101, 11755–11760 (2004).

    Article  CAS  Google Scholar 

  8. He, L. et al. A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005).

    Article  CAS  Google Scholar 

  9. Johnson, S.M. et al. RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005).

    Article  CAS  Google Scholar 

  10. Kim, V.N. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 6, 376–385 (2005).

    Article  CAS  Google Scholar 

  11. Yi, R., Qin, Y., Macara, I. & Cullen, B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016 (2003).

    Article  CAS  Google Scholar 

  12. Nelson, P.T. et al. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat. Methods 1, 155–161 (2004).

    Article  CAS  Google Scholar 

  13. Yanagida, T., Kitamura, K., Tanaka, H., Hikikoshi Iwane, A. & Esaki, S. Single molecule analysis of the actomyosin motor. Curr. Opin. Cell Biol. 12, 20–25 (2000).

    Article  CAS  Google Scholar 

  14. Schwille, P., Bieschke, J. & Oehlenschlager, F. Kinetic investigations by fluorescence correlation spectroscopy: the analytical and diagnostic potential of diffusion studies. Biophys. Chem. 66, 211–228 (1997).

    Article  CAS  Google Scholar 

  15. Li, H., Ying, L., Green, J.J., Balasubramanian, S. & Klenerman, D. Ultrasensitive coincidence fluorescence detection of single DNA molecules. Anal. Chem. 75, 1664–1670 (2003).

    Article  CAS  Google Scholar 

  16. Schwille, P., Kummer, S., Heikal, A.A., Moerner, W.E. & Webb, W.W. Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins. Proc. Natl. Acad. Sci. USA 97, 151–156 (2000).

    Article  CAS  Google Scholar 

  17. Anazawa, T., Matsunaga, H. & Young, E.S. Electrophoretic quantitation of nucleic acids without amplification by single-molecule imaging. Anal. Chem. 74, 5033–5038 (2002).

    Article  CAS  Google Scholar 

  18. Ambrose, W.P. et al. Detection system for reaction-rate analysis in a low-volume proteinase-inhibition assay. Anal. Biochem. 263, 150–157 (1998).

    Article  CAS  Google Scholar 

  19. Dovichi, N.J., Martin, J.C., Jett, J.H., Trkula, M. & Keller, R.A. Laser-induced fluorescence of flowing samples as an approach to single-molecule detection in liquids. Anal. Chem. 56, 348–354 (1984).

    Article  CAS  Google Scholar 

  20. Dundr, M., McNally, J.G., Cohen, J. & Misteli, T. Quantitation of GFP-fusion proteins in single living cells. J. Struct. Biol. 140, 92–99 (2002).

    Article  CAS  Google Scholar 

  21. Miska, E.A. et al. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biology 5, R71.1–R71.15. (2004).

    Article  Google Scholar 

  22. Baskerville, S. & Bartel, D.P. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11, 241–247 (2005).

    Article  CAS  Google Scholar 

  23. Barad, O. et al. MicroRNA expression detection by oligonucleotide microarrays: System establishment and expression profiling in human tissues. Genome Res. 14, 2486–2494 (2004).

    Article  CAS  Google Scholar 

  24. Korn, K. et al. Gene expression analysis using single molecule detection. Nucleic Acids Res. 31, e89 (2003).

    Article  Google Scholar 

  25. Castro, A. & Williamson, J.G.K. Single molecule detection of specific nucleic acid sequences in unamplified genomic DNA. Anal. Chem. 69, 3915–3920 (1997).

    Article  CAS  Google Scholar 

  26. Chan, E.Y. et al. DNA mapping using microfluidic stretching and single-molecule detection of fluorescent site-specific tags. Genome Res. 14, 1137–1146 (2004).

    Article  CAS  Google Scholar 

  27. Eigen, M. & Rigler, R. Sorting single molecules: applications to diagnostics and evolutionary biotechnology. Proc. Natl. Acad. Sci. USA 91, 5740–5747 (1994).

    Article  CAS  Google Scholar 

  28. Nie, S., Chiu, D.T. & Zare, R.N. Real time detection of single molecules in solution by confocal fluorescence microscopy. Analytical Chemistry 67, 2849–2857 (1995).

    Article  CAS  Google Scholar 

  29. Brinkmeier, M., Dorre, K., Stephan, J. & Eigen, M. Two beam cross correlation: A method to characterize transport phenomena in micrometer-sized structures. Anal. Chem. 71, 609–616 (1999).

    Article  CAS  Google Scholar 

  30. R Development Core Team. R: A language and environment for statistical computing, R foundation for computing. Vienna, Austria (2005) ISBN 3-900051-07-0.

Download references

Acknowledgements

We thank our collaborator A.C. Eklund for generating the heat maps and conducting the hierarchical clustering and M. Barth for help preparing the figures. We thank all of our colleagues at US Genomics especially D. Hoey, R. Gilmanshin, J. Larson, E. Nalefski and A. Maletta for fostering fruitful scientific discussion. We thank L. Kunkel, F. Boeckman and D. Whitney for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lori A Neely.

Ethics declarations

Competing interests

The authors are presently or were formerly US Genomics employees.

Supplementary information

Supplementary Fig. 1

Northern blots confirm the tissue-specific expression patterns observed by our single molecule method. (PDF 225 kb)

Supplementary Table 1

Sequences of the LNA/DNA chimeric probes used in this study. (PDF 53 kb)

Supplementary Methods (PDF 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neely, L., Patel, S., Garver, J. et al. A single-molecule method for the quantitation of microRNA gene expression. Nat Methods 3, 41–46 (2006). https://doi.org/10.1038/nmeth825

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth825

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing