Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deep tissue two-photon microscopy

A Corrigendum to this article was published on 01 March 2006

Abstract

With few exceptions biological tissues strongly scatter light, making high-resolution deep imaging impossible for traditional—including confocal—fluorescence microscopy. Nonlinear optical microscopy, in particular two photon–excited fluorescence microscopy, has overcome this limitation, providing large depth penetration mainly because even multiply scattered signal photons can be assigned to their origin as the result of localized nonlinear signal generation. Two-photon microscopy thus allows cellular imaging several hundred microns deep in various organs of living animals. Here we review fundamental concepts of nonlinear microscopy and discuss conditions relevant for achieving large imaging depths in intact tissue.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Nonlinear optical microscopy.
Figure 2: Signal generation and fluorescence collection in clear tissue (no scatter) and in scattering tissue (scatter).
Figure 3: Beam size adjustment relative to the objective's back aperture.
Figure 4: In vivo two-photon imaging in the intact neocortex.

References

  1. Denk, W., Piston, D.W. & Webb, W.W. Two-photon molecular excitation in laser-scanning microscopy. In Handbook of Biological Confocal Microscopy 2nd edn. (ed. Pawley, J.B.) 445–458 (Plenum Press, New York, 1995).

    Chapter  Google Scholar 

  2. Denk, W. & Svoboda, K. Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18, 351–357 (1997).

    CAS  Article  PubMed  Google Scholar 

  3. So, P.T., Dong, C.Y., Masters, B.R. & Berland, K.M. Two-photon excitation fluorescence microscopy. Annu. Rev. Biomed. Eng. 2, 399–429 (2000).

    CAS  Article  PubMed  Google Scholar 

  4. Helmchen, F. & Denk, W. New developments in multiphoton microscopy. Curr. Opin. Neurobiol. 12, 593–601 (2002).

    CAS  PubMed  Article  Google Scholar 

  5. Zipfel, W.R., Williams, R.M. & Webb, W.W. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003).

    CAS  Article  PubMed  Google Scholar 

  6. Campagnola, P.J. & Loew, L.M. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat. Biotechnol. 21, 1356–1360 (2003).

    CAS  PubMed  Article  Google Scholar 

  7. Mertz, J. Nonlinear microscopy: new techniques and applications. Curr. Opin. Neurobiol. 14, 610–616 (2004).

    CAS  PubMed  Article  Google Scholar 

  8. Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    CAS  Article  PubMed  Google Scholar 

  9. Cahalan, M.D., Parker, I., Wei, S.H. & Miller, M.J. Real-time imaging of lymphocytes in vivo. Curr. Opin. Immunol. 15, 372–377 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Bousso, P. & Robey, E.A. Dynamic behavior of T cells and thymocytes in lymphoid organs as revealed by two-photon microscopy. Immunity 21, 349–355 (2004).

    CAS  PubMed  Article  Google Scholar 

  11. Molitoris, B.A. & Sandoval, R.M. Intravital multiphoton microscopy of dynamic renal processes. Am. J. Physiol. Renal Physiol. 288, F1084–F1089 (2005).

    CAS  PubMed  Article  Google Scholar 

  12. Rubart, M. Two-photon microscopy of cells and tissue. Circ. Res. 95, 1154–1166 (2004).

    CAS  PubMed  Article  Google Scholar 

  13. Laiho, L.H., Pelet, S., Hancewicz, T.M., Kaplan, P.D. & So, P.T. Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra. J. Biomed. Opt. 10, 024016 (2005).

    PubMed  Article  Google Scholar 

  14. Theer, P., Hasan, M.T. & Denk, W. Two-photon imaging to a depth of 1000 microns in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt. Lett. 28, 1022–1024 (2003).

    CAS  PubMed  Article  Google Scholar 

  15. Jain, R.K., Munn, L.L. & Fukumura, D. Dissecting tumour pathophysiology using intravital microscopy. Nat. Rev. Cancer 2, 266–276 (2002).

    CAS  PubMed  Article  Google Scholar 

  16. Skoch, J., Hickey, G.A., Kajdasz, S.T., Hyman, B.T. & Bacskai, B.J. In vivo imaging of amyloid-beta deposits in mouse brain with multiphoton microscopy. Methods Mol. Biol. 299, 349–363 (2005).

    CAS  PubMed  Google Scholar 

  17. Goeppert-Mayer, M. Über Elementarakte mit zwei Quantensprüngen (On elementary processes with two quantum steps) Ann. Phys. 9, 273–294 (1931).

    Article  Google Scholar 

  18. Xu, C. & Webb, W.W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1,050 nm. J. Opt. Soc. Am. B 13, 481–491 (1996).

    CAS  Article  Google Scholar 

  19. Squier, J., Muller, M., Brakenhoff, G. & Wilson, K. Third harmonic generation microscopy. Opt. Express 3, 315–324 (1998).

    CAS  PubMed  Article  Google Scholar 

  20. Oron, D. et al. Depth-resolved structural imaging by third-harmonic generation microscopy. J. Struct. Biol. 147, 3–11 (2004).

    PubMed  Article  Google Scholar 

  21. Mohler, W., Millard, A. & Campagnola, P. Second harmonic generation imaging of endogenous structural proteins. Methods 29, 97–109 (2003).

    CAS  PubMed  Article  Google Scholar 

  22. Dombeck, D.A. et al. Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy. Proc. Natl. Acad. Sci. USA 100, 7081–7086 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. Bouevitch, O., Lewis, A., Pinevsky, I., Wuskell, J. & Loew, L. Probing membrane-potential with nonlinear optics. Biophys. J. 65, 672–679 (1993).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Moreaux, L., Sandre, O., Blanchard-Desce, M. & Mertz, J. Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy. Opt. Lett. 25, 320–322 (2000).

    CAS  PubMed  Article  Google Scholar 

  25. Cheng, J., Volkmer, A. & Xie, X. Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy. J. Opt. Soc. Am. B 19, 1363–1375 (2002).

    CAS  Article  Google Scholar 

  26. Wang, H., Fu, Y., Zickmund, P., Shi, R. & Cheng, J. Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues. Biophys. J. 89, 581–591 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Svoboda, K. & Block, S.M. Biological applications of optical forces. Annu. Rev. Bioph. Biomol. Struct. 23, 247–285 (1994).

    CAS  Article  Google Scholar 

  28. Squirrell, J.M., Wokosin, D.L., White, J.G. & Bavister, B.D. Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat. Biotechnol. 17, 763–767 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Denk, W. Two-photon scanning photochemical microscopy: mapping ligand-gated ion channel distributions. Proc. Natl. Acad. Sci. USA 91, 6629–6633 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. Svoboda, K., Tank, D.W. & Denk, W. Direct measurement of coupling between dendritic spines and shafts. Science 272, 716–719 (1996).

    CAS  PubMed  Article  Google Scholar 

  31. Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4, 1086–1092 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Pologruto, T.A., Sabatini, B.L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003).

    PubMed  PubMed Central  Article  Google Scholar 

  33. Tsai, P.S. et al. Principles, design, and construction of a two-photon laser scanning microscope for in vitro and in vivo brain imaging. In Vivo Pptical Imaging of Brain Function. (Frostig, R.D., ed.) (CRC Press, New York, 2002).

    Google Scholar 

  34. Mainen, Z.F. et al. Two-photon imaging in living brain slices. Methods 18, 231–239 (1999).

    CAS  Article  PubMed  Google Scholar 

  35. Majewska, A., Yiu, G. & Yuste, R. A custom-made two-photon microscope and deconvolution system. Pflugers Arch. 441, 398–408 (2000).

    CAS  PubMed  Article  Google Scholar 

  36. Gosnell, T.R. & Taylor, A.J. (eds.) Selected Papers on Ultrafast Laser Technology. (SPIE Optical Engineering Press, Bellingham, 1991).

    Google Scholar 

  37. Treacy, E.B. Optical pulse compression with diffraction gratings. IEEE J. Quantum Electron. 5, 454–458 (1969).

    Article  Google Scholar 

  38. Diels, J.-C.M., Fontaine, J.J., McMichael, I.C. & Simoni, F. Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy. App. Opt. 24, 1270–1282 (1985).

    CAS  Article  Google Scholar 

  39. Patterson, G.H. & Piston, D.W. Photobleaching in two-photon excitation microscopy. Biophys. J. 78, 2159–2162 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Hopt, A. & Neher, E. Highly nonlinear photodamage in two-photon fluorescence microscopy. Biophys. J. 80, 2029–2036 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Koester, H.J., Baur, D., Uhl, R. & Hell, S.W. Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage. Biophys. J. 77, 2226–2236 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Kawano, H. et al. Attenuation of photobleaching in two-photon excitation fluorescence from green fluorescent protein with shaped excitation pulses. Biochem. Biophys. Res. Commun. 311, 592–596 (2003).

    CAS  PubMed  Article  Google Scholar 

  43. Oheim, M., Beaurepaire, E., Chaigneau, E., Mertz, J. & Charpak, S. Two-photon microscopy in brain tissue: parameters influencing the imaging depth. J. Neurosci. Methods 111, 29–37 (2001).

    CAS  PubMed  Article  Google Scholar 

  44. Beaurepaire, E. & Mertz, J. Epifluorescence collection in two-photon microscopy. Appl. Opt. 41, 5376–5382 (2002).

    PubMed  Article  Google Scholar 

  45. Birge, R.R. 2-photon spectroscopy of protein-bound chromophors. Acc. Chem. Res. 19, 138–146 (1986).

    CAS  Article  Google Scholar 

  46. Wang, H. et al. Generation of 10-W average-power, 40-TW peak-power, 24-fs pulses from a Ti:sapphire amplifier system. J. Opt. Soc. Am. B 16, 1790–1794 (1999).

    CAS  Article  Google Scholar 

  47. Beaurepaire, E., Oheim, M. & Mertz, J. Ultra-deep two-photon fluorescence excitation in turbid media. Opt. Comm. 188, 25–29 (2001).

    CAS  Article  Google Scholar 

  48. Feierabend, M., Ruckel, M. & Denk, W. Coherence-gated wave-front sensing in strongly scattering samples. Opt. Lett. 29, 2255–2257 (2004).

    PubMed  Article  Google Scholar 

  49. Booth, M., Neil, M., Juskaitis, R. & Wilson, T. Adaptive aberration correction in a confocal microscope. Proc. Natl. Acad. Sci. USA 99, 5788–5792 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. Taddeucci, A., Martelli, F., Barilli, M., Ferrari, M. & Zaccanti, G. Optical properties of brain tissue. J. Biomed. Opt. 1, 117–123 (1996).

    CAS  PubMed  Article  Google Scholar 

  51. Yaroslavsky, A. et al. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys. Med. Biol. 47, 2059–2073 (2002).

    CAS  PubMed  Article  Google Scholar 

  52. Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D.W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385, 161–165 (1997).

    CAS  PubMed  Article  Google Scholar 

  53. Kleinfeld, D., Mitra, P.P., Helmchen, F. & Denk, W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc. Natl. Acad. Sci. USA 95, 15741–15746 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. Svoboda, K., Helmchen, F., Denk, W. & Tank, D.W. Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo. Nat. Neurosci. 2, 65–73 (1999).

    CAS  PubMed  Article  Google Scholar 

  55. Helmchen, F., Svoboda, K., Denk, W. & Tank, D.W. In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat. Neurosci. 2, 989–996 (1999).

    CAS  PubMed  Article  Google Scholar 

  56. Nimmerjahn, A., Kirchhoff, F., Kerr, J.N. & Helmchen, F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat. Methods 1, 31–37 (2004).

    CAS  PubMed  Article  Google Scholar 

  57. Mizrahi, A., Crowley, J., Shtoyerman, E. & Katz, L. High-resolution in vivo imaging of hippocampal dendrites and spines. J. Neurosci. 24, 3147–3151 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. Jung, J. & Schnitzer, M. Multiphoton endoscopy. Opt. Lett. 28, 902–904 (2003).

    PubMed  Article  Google Scholar 

  59. Levene, M., Dombeck, D., Kasischke, K., Molloy, R. & Webb, W. In vivo multiphoton microscopy of deep brain tissue. J. Neurophysiol. 91, 1908–1912 (2004).

    PubMed  Article  Google Scholar 

  60. Jung, J., Mehta, A., Aksay, E., Stepnoski, R. & Schnitzer, M. In vivo mammalian brain Imaging using one- and two-photon fluorescence microendoscopy. J. Neurophysiol. 92, 3121–3133 (2004).

    PubMed  Article  Google Scholar 

  61. Göbel, W., Kerr, J.N., Nimmerjahn, A. & Helmchen, F. Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective. Opt. Lett. 29, 2521–2523 (2004).

    PubMed  Article  Google Scholar 

  62. Huang, S., Heikal, A.A. & Webb, W.W. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys. J. 82, 2811–2825 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Waters, J., Larkum, M., Sakmann, B. & Helmchen, F. Supralinear Ca2+ influx in dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo. J. Neurosci. 23, 8558–8567 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Wachowiak, M., Denk, W. & Friedrich, R.W. Functional organization of sensory input to the olfactory bulb glomerulus analyzed by two-photon calcium imaging. Proc. Natl. Acad. Sci. USA 101, 9097–9102 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. Kreitzer, A., Gee, K., Archer, E. & Regehr, W. Monitoring presynaptic calcium dynamics in projection fibers by in vivo loading of a novel calcium indicator. Neuron 27, 25–32 (2000).

    CAS  PubMed  Article  Google Scholar 

  66. Christie, R.H. et al. Growth arrest of individual senile plaques in a model of Alzheimer's disease observed by in vivo multiphoton microscopy. J. Neurosci. 21, 858–864 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100, 7319–7324 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Young, P. & Feng, G. Labeling neurons in vivo for morphological and functional studies. Curr. Opin. Neurobiol. 14, 642–646 (2004).

    CAS  PubMed  Article  Google Scholar 

  69. Miesenbock, G. Genetic methods for illuminating the function of neural circuits. Curr. Opin. Neurobiol. 14, 395–402 (2004).

    CAS  PubMed  Article  Google Scholar 

  70. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    CAS  Article  PubMed  Google Scholar 

  71. Hasan, M.T. et al. Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control. PLoS Biol. 2, e163 (2004).

    PubMed  PubMed Central  Article  Google Scholar 

  72. Wang, J.W., Wong, A.M., Flores, J., Vosshall, L.B. & Axel, R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271–282 (2003).

    CAS  PubMed  Article  Google Scholar 

  73. Kim, J. et al. Sindbis vector SINrep(nsP2S726): a tool for rapid heterologous expression with attenuated cytotoxicity in neurons. J. Neurosci. Methods 133, 81–90 (2004).

    CAS  PubMed  Article  Google Scholar 

  74. Lendvai, B., Stern, E.A., Chen, B. & Svoboda, K. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404, 876–881 (2000).

    CAS  Article  PubMed  Google Scholar 

  75. Dittgen, T. et al. Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc. Natl. Acad. Sci. USA 101, 18206–18211 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).

    CAS  PubMed  Article  Google Scholar 

  77. Grutzendler, J., Kasthuri, N. & Gan, W.B. Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816 (2002).

    CAS  PubMed  Article  Google Scholar 

  78. Yoder, E.J. & Kleinfeld, D. Cortical imaging through the intact mouse skull using two-photon excitation laser scanning microscopy. Microsc. Res. Tech. 56, 304–305 (2002).

    PubMed  Article  Google Scholar 

  79. Zuo, Y., Lin, A., Chang, P. & Gan, W.B. Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46, 181–189 (2005).

    CAS  PubMed  Article  Google Scholar 

  80. Trachtenberg, J.T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

    CAS  PubMed  Article  Google Scholar 

  81. Majewska, A. & Sur, M. Motility of dendritic spines in visual cortex in vivo: changes during the critical period and effects of visual deprivation. Proc. Natl. Acad. Sci. USA 100, 16024–16029 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. Holtmaat, A.J. et al. Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45, 279–291 (2005).

    CAS  PubMed  Article  Google Scholar 

  83. Waters, J. & Helmchen, F. Boosting of action potential backpropagation by neocortical network activity in vivo. J. Neurosci. 24, 11127–11136 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. Charpak, S., Mertz, J., Beaurepaire, E., Moreaux, L. & Delaney, K. Odor-evoked calcium signals in dendrites of rat mitral cells. Proc. Natl. Acad. Sci. USA 98, 1230–1234 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. Margrie, T.W. et al. Targeted whole-cell recordings in the mammalian brain in vivo. Neuron 39, 911–918 (2003).

    CAS  PubMed  Article  Google Scholar 

  86. Kerr, R. et al. Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26, 583–594 (2000).

    CAS  PubMed  Article  Google Scholar 

  87. Reiff, D.F. et al. In vivo performance of genetically encoded indicators of neural activity in flies. J. Neurosci. 25, 4766–4778 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Ohki, K., Chung, S., Ch'ng, Y., Kara, P. & Reid, R. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433, 597–603 (2005).

    CAS  PubMed  Article  Google Scholar 

  89. Kerr, J.N., Greenberg, D. & Helmchen, F. Imaging input and output of neocortical networks in vivo. Proc. Natl. Acad. Sci. USA 102, 14063–14068 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. Sullivan, M.R., Nimmerjahn, A., Sarkisov, D.V., Helmchen, F. & Wang, S.S.-H. In vivo calcium imaging of circuit activity in cerebellar cortex. J. Neurophysiol. 94, 1636–1644 (2005).

    CAS  PubMed  Article  Google Scholar 

  91. Brustein, E., Marandi, N., Kovalchuk, Y., Drapeau, P. & Konnerth, A. “In vivo” monitoring of neuronal network activity in zebrafish by two-photon Ca2+ imaging. Pflugers Arch. 446, 766–773 (2003).

    CAS  PubMed  Article  Google Scholar 

  92. Niell, C.M. & Smith, S.J. Functional imaging reveals rapid development of visual response properties in the zebrafish tectum. Neuron 45, 941–951 (2005).

    CAS  PubMed  Article  Google Scholar 

  93. Fan, G.Y. et al. Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons. Biophys. J. 76, 2412–2420 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Roorda, R.D., Hohl, T.M., Toledo-Crow, R. & Miesenbock, G. Video-rate nonlinear microscopy of neuronal membrane dynamics with genetically encoded probes. J. Neurophysiol. 92, 609–621 (2004).

    PubMed  Article  Google Scholar 

  95. Bacskai, B.J. et al. Four-dimensional multiphoton imaging of brain entry, amyloid binding, and clearance of an amyloid-beta ligand in transgenic mice. Proc. Natl. Acad. Sci. USA 100, 12462–12467 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. Tsai, J., Grutzendler, J., Duff, K. & Gan, W. Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat. Neurosci. 7, 1181–1183 (2004).

    CAS  PubMed  Article  Google Scholar 

  97. Lombardo, J.A. et al. Amyloid-beta antibody treatment leads to rapid normalization of plaque-induced neuritic alterations. J. Neurosci. 23, 10879–10883 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758 (2005).

    CAS  PubMed  Article  Google Scholar 

  99. Helmchen, F., Fee, M.S., Tank, D.W. & Denk, W. A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals. Neuron 31, 903–912 (2001).

    CAS  PubMed  Article  Google Scholar 

  100. Kuhn, B., Fromherz, P. & Denk, W. High sensitivity of Stark-shift voltage-sensing dyes by one- or two-photon excitation near the red spectral edge. Biophys. J. 87, 631–639 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. Kuner, T. & Augustine, G.J. A genetically encoded ratiometric indicator for chloride: Capturing chloride transients in cultured hippocampal neurons. Neuron 27, 447–459 (2000).

    CAS  PubMed  Article  Google Scholar 

  102. Berglund, K., Dunbar, R.L., Psyche, L., Feng, G. & Augustine, G.J. A practical guide: Imaging synaptic inhibition with Clomeleon, a genetically encoded indicator. in Imaging in Neuroscience and Development: a Laboratory Manual. (Yuste, R. & Konnerth, A. eds.) (Cold Spring Harbor Press, Cold Spring Harbor, 2005).

    Google Scholar 

  103. Ying, J., Liu, F. & Alfano, R. Effect of scattering on nonlinear optical scanning microscopy imaging of highly scattering media. App. Opt. 39, 509–514 (2000).

    CAS  Article  Google Scholar 

  104. Sheppard, C.J. & Gu, M. Image formation in two-photon fluorescence microscopy. Optik 86, 104–106 (1990).

    CAS  Google Scholar 

  105. Cox, G. & Sheppard, C.J. Practical limits of resolution in confocal and non-linear microscopy. Microsc. Res. Tech. 63, 18–22 (2004).

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank T. Kuner, G. Augustine and G. Feng for providing the Clomeleon mouse and W. Göbel for help with numerical calculations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fritjof Helmchen or Winfried Denk.

Ethics declarations

Competing interests

W.D. is one of the authors on a patent on two-photon microscopy (US Patent 5034613).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Helmchen, F., Denk, W. Deep tissue two-photon microscopy. Nat Methods 2, 932–940 (2005). https://doi.org/10.1038/nmeth818

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth818

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing