Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optical sectioning microscopy

Abstract

Confocal scanning microscopy, a form of optical sectioning microscopy, has radically transformed optical imaging in biology. These devices provide a powerful means to eliminate from images the background caused by out-of-focus light and scatter. Confocal techniques can also improve the resolution of a light microscope image beyond what is achievable with widefield fluorescence microscopy. The quality of the images obtained, however, depends on the user's familiarity with the optical and fluorescence concepts that underlie this approach. We describe the core concepts of confocal microscopes and important variables that adversely affect confocal images. We also discuss data-processing methods for confocal microscopy and computational optical sectioning techniques that can perform optical sectioning without a confocal microscope.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The confocal principle.
Figure 2: The PSF.
Figure 3: PSF, SNR and background rejection.
Figure 4: Linear unmixing.
Figure 5: Deconvolution results.

References

  1. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).

    Article  CAS  Google Scholar 

  2. Minsky, M. (US patent 3013467, 1961).

  3. Minsky, M. Memoir on inventing the confocal scanning microscope. Scanning 10, 128–139 (1988).

    Article  Google Scholar 

  4. Conchello, J-A., Kim, J.J. & Hansen, E.W. Enhanced 3D reconstruction from confocal scanning microscope images. II: depth discrimination vs. signal-to-noise ratio in partially confocal images. Appl. Opt. 33, 3740–3750 (1994).

    Article  CAS  Google Scholar 

  5. Sandison, D.R., Piston, D., Williams, R.M. & Webb, W.W. Quantitative comparison of background rejection, signal-to-nose ratio, and resolution in confocal and full-field laser scanning microscopes. Appl. Opt. 34, 3576–3588 (1995).

    Article  CAS  Google Scholar 

  6. Tsien, R.Y. & Waggoner, A. Fluorophores for confocal microscopy. In Handbook of biological confocal microscopy (ed. Pawley, J.B.) 267–279 (Plenum Press, New York, 1995).

    Chapter  Google Scholar 

  7. Petràn, M., Hardvsky, M., Egger, M.D. & Galambos, R. Tandem scanning reflected-light microscope. J. Opt. Soc. Am. 58, 661–664 (1968).

    Article  Google Scholar 

  8. Petràn, M., Boyde, A. & Hardvsky, M. Direct view confocal microscopy. In Confocal Microscopy (ed. Wilson, T.) 245–284 (Academic Press, New York, 1990).

    Google Scholar 

  9. Kino, G.S. & Xiao, G.Q. Real-time scanning microscopes. In Confocal Microscopy (ed. Wilson, T.) 361–388 (Academic Press, London, 1990).

    Google Scholar 

  10. Lichtman, J.W. Confocal microscopy. Sci. Am. 271, 30–35 (1994).

    Article  Google Scholar 

  11. Lichtman, J.W. High-resolution imaging of synaptic structure with a simple confocal microscope. New Biol. 1, 75–82 (1989).

    CAS  PubMed  Google Scholar 

  12. Lichtman, J.W. & Sunderland, W.J. (Washington Univeristy; US patent 4884880, 1990).

  13. Inoué, S. & Inoué, T. Direct-view high-speed confocal scanner: The CSU-10. In Cell biological applications of confocal microscopy (ed. Matsumoto, B.) 88–128 (Academic Press, New York, 2002).

    Google Scholar 

  14. Tanaami, T. et al. High-speed 1-frame/ms scanning confocal microscope with a microlens and a Nipkow disk. Appl. Opt. 41, 4704–4708 (2002).

    Article  Google Scholar 

  15. Conchello, J-A. & Lichtman, J.W. Theoretical analysis of a rotating-disk partially confocal scanning microscope. Appl. Opt. 33, 585–596 (1994).

    Article  CAS  Google Scholar 

  16. Stutz, G.E. Laser scanning system design. Photonics Spectra 24, 113–116 (1990).

    Google Scholar 

  17. Tsien, R.Y. & Bacskai, B.J. Video-rate confocal microscopy. In Handbook of biological confocal microscopy (ed. Pawley, J.B.) 459–478 (Plenum Press, New York, 1995).

    Chapter  Google Scholar 

  18. Callamaras, N. & Parker, I. Construction of a confocal microscope for real-time x-y and x-z imaging. Cell Calcium 26, 271–279 (1999).

    Article  CAS  Google Scholar 

  19. Gratton, E. & vande Ven, M.J. Laser sources for confocal microscopy. In Handbook of biological confocal microscopy (ed. Pawley, J.B.) 69–97 (Plenum Press, New York, 1995).

    Chapter  Google Scholar 

  20. Sandison, D.R., Williams, R.M., Wells, K.S., Stricker, J. & Webb, W.W. Quantitative fluorescence confocal laser scanning microscopy (CLSM). In Handbook of biological confocal microscopy (ed. Pawley, J.B.) 39–53 (Plenum Press, New York, 1995).

    Chapter  Google Scholar 

  21. Srinath, M.D. & Rajasekaran, P.K. Statistical Signal Processing with Applications (John Willey and Sons, New York, 1979).

    Google Scholar 

  22. Kay, S.M. Fundamentals of statistical signal processing (Prentice Hall, 1993).

  23. Lichtman, J. & Conchello, J.-A. Fluorescence microscopy. Nat. Methods 2, 910–919 (2005).

    Article  CAS  Google Scholar 

  24. Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

    Article  CAS  Google Scholar 

  25. Zimmermann, T. Spectral imaging and linear unmixing in light microscopy. In Microscopy techniques advances in biochemical engineering/biotechnology 95, 245–265 (2005).

    Google Scholar 

  26. Zimmermann, T., Rietdorf, J. & Pepperkok, R. Spectral imaging and its applications in live cell microscopy. FEBS Lett. 546, 87–92 (2003).

    Article  CAS  Google Scholar 

  27. Zimmermann, T., Rietdorf, J., Girod, A., Georget, V. & Pepperkok, R. Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. FEBS Lett. 531, 245–249 (2002).

    Article  CAS  Google Scholar 

  28. Hiraoka, Y., Shimi, T. & Haraguchi, T. Multispectral imaging fluorescence microscopy for living cells. Cell Struct. Funct. 27, 367–374 (2002).

    Article  Google Scholar 

  29. Conchello, J.-A. An overview of three-dimensional and four-dimensional microscopy by computational deconvolution. In Cell Imaging-Methods Express (ed. Stevens, D.) 181–204 (2005).

    Google Scholar 

  30. Preza, C., Miller, M.I. & Thomas, L.J. Jt. & McNally, J.G. Regularized linear method for reconstruction of three-dimensional microscopic objects from optical sections. J. Opt. Soc. Am. A 9, 219–228 (1992).

    Article  CAS  Google Scholar 

  31. Frieden, B.R. Probability, statistical optics, and data testing. 206–210 (Springer-Verlag, Berlin, Germany, 1982).

    Google Scholar 

  32. McNally, J.G., Preza, C., Conchello, J-A. & Thomas, L.J., Jr. Artifacts in computational optical sectioning microscopy. J. Opt. Soc. Am. A 11, 1056–1067 (1994).

    Article  CAS  Google Scholar 

  33. Frieden, B.R. Image enhancement and restoration. In Picture processing and image filtering (ed. Huang, T.S.) 179–248 (Springer-Verlag, New York, 1975).

    Google Scholar 

  34. Agard, D.A. Optical sectioning microscopy. Annu. Rev. Biophys. Bioeng. 13, 191–219 (1984).

    Article  CAS  Google Scholar 

  35. Carrington, W.A. Image restoration in 3D microscopy with limited data in Bioimaging and two-dimensional spectroscopy (ed. Smith, L.C.) 72–83 (SPIE Press, Bellingham, Washington, 1990).

    Chapter  Google Scholar 

  36. Carrington, W.A. & Fogarty, K.E. (US patent 5047968, 1991).

  37. Holmes, T.J. Maximum-likelihood image restoration adapted for noncoherent optical imaging. J. Opt. Soc. Am. A 5, 666–673 (1988).

    Article  CAS  Google Scholar 

  38. Holmes, T.J. & Liu, Y-H. Richardson-Lucy/maximum likelihood image restoration algorithm for fluorescence microscopy: further testing. Appl. Opt. 28, 4930–4938 (1989).

    Article  CAS  Google Scholar 

  39. Conchello, J-A. Super-resolution and convergence properties of the expectation maximization for maximum-likelihood deconvolution of incoherent images. J. Opt. Soc. Am. A 15, 2609–2619 (1998).

    Article  CAS  Google Scholar 

  40. Conchello, J-A. & Hansen, E.W. Enhanced 3D reconstruction from confocal scanning microscope images I: Deterministic and maximum likelihood reconstructions. Appl. Opt. 29, 3795–3804 (1990).

    Article  CAS  Google Scholar 

  41. Dempster, A.P., Laird, N.M. & Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39 1–38 (1977).

    Google Scholar 

  42. Markham, J. & Conchello, J-A. Fast maximum-likelihood image restoration algorithms for three-dimensional fluorescence microscopy. J. Opt. Soc. Am. A 18, 1062–1071 (2001).

    Article  CAS  Google Scholar 

  43. Hanley, Q.S., Verveer, P.J. & Jovin, T.M. Optical sectioning fluorescence spectroscopy in a progammagle array microscope. Appl. Spectrosc. 52, 783–789 (1998).

    Article  CAS  Google Scholar 

  44. Verveer, P.J., Hanley, Q.S., Verbeek, P.W., van Vliet, L.J. & Jovin, T.M. Theory of confocal fluorescence imaging in the programmable array microscope (PAM). J. Microsc. 189, 192–198 (1998).

    Article  Google Scholar 

  45. Wilson, T., Juskaitis, R., Neil, M.A.A. & Kozubek, M. Confocal microscopy by aperture correlation. Opt. Lett. 21, 1879–1881 (1996).

    Article  CAS  Google Scholar 

  46. Dixon, T. Microscopy - Random mask brightness image. Nature 383, 760–761 (1996).

    Article  CAS  Google Scholar 

  47. Neil, M.A.A., Juškaitis, R. & Wilson, T. Method for obtaining sectioning by using structured light in a conventional microscope. Opt. Lett. 25, 1361–1363 (1997).

    Google Scholar 

  48. Wilson, T., Neil, M.A.A. & Juškaitis, R. Optically Sectioned images in wide-field fluorescence microscopy. In Three-dimensional and multidimensional microscopy: Image Acquisition and Processing V (eds. Cogswell, C.J., Conchello, J.-A., Lerner, J.M., Lu, T. & Wilson, T.) 4–6 (SPIE Press, Bellingham, Washington, 1998).

    Chapter  Google Scholar 

  49. Gustafsson, M.G.L., Agard, D.A. & Sedat, J.W. Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination. In Three-dimensional and multidimensional microscopy: image acquisition and processing VII (eds. Conchello, J.-A., Cogswell, C.J. & Wilson, T.) 141–150 (SPIE Press, Belingham, WA, 2000).

    Chapter  Google Scholar 

  50. Gustafsson, M.G.L., Agard, D.A. & Sedat, J.W. Surpasing the lateral resolution by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000).

    Article  CAS  Google Scholar 

  51. Neil, M.A.A., Juškaitis, R. & Wilson, T. Real time 3D fluorescence microscopy by two beam interferece illumination. Opt. Commun. 153, 1–4 (1998).

    Article  CAS  Google Scholar 

  52. Neil, M.A.A., Juškaitis, R. & Wilson, T. A light efficient optically sectioning microscope. J. Microsc. 189, 114–117 (1998).

    Article  Google Scholar 

  53. Wilson, T., Neil, M.A.A. & Juškaitis, R. Real-time three-dimensional imaging of macroscopic structures. J. Microsc. 191, 116–118 (1998).

    Article  CAS  Google Scholar 

  54. Gustafsson, M.G.L. Extended resolution fluorescence microscopy. Curr. Opin. Struct. Biol. 9, 627–634 (1999).

    Article  CAS  Google Scholar 

  55. Fedosseev, R., Belyaev, Y., Frohn, J. & Stemmer, A. Structured light illumination for extended resolution in fluorescence microscopy. Opt. Lasers Eng. 43, 403–314 (2005).

    Article  Google Scholar 

  56. Conn, P.M. (ed.) Confocal Microscopy (Academic Press, New York, 1999).

    Google Scholar 

  57. Diaspro, A. (ed.). Confocal and two-photon microscopy: Foundations, applications and advances. (John Wiley and Sons, New York, 2001).

  58. Inoué, S. & Spring, K.R. Video Microscopy. The Fundamentals (Plenum Press, New York, 1997).

    Book  Google Scholar 

  59. Matsumoto, B. (ed.). Cell biological applications of confocal microscopy (Academic Press, New York, 2003).

    Google Scholar 

  60. Murphy, D.B. Fundamentals of light microscopy and electronic imaging (Wiley-Liss, New York, 2001).

  61. Pawley, J.B. (ed.). Handbook of biological confocal microscopy (Plenum Press, New York, 1995).

    Book  Google Scholar 

  62. Paddock, S. (ed.). Confocal Microscopy (Oxford University Press, Oxford, 2001).

    Google Scholar 

  63. Periasamy, A. (ed.). Methods in Cellular Imaging (Oxford University Press, Oxford, 2001).

    Book  Google Scholar 

  64. Sheppard, C.J.R. & Shotton, D.M. Confocal Laser Scanning Microscopy (BIOS Scientific Publisers, Oxford, 1997).

    Google Scholar 

  65. Stevens, J.K., Mills, L.R. & Trogadis, J.E. Three-dimensinoal confocal microscopy: Volume investigation of biological systems (Academic Press, New York, 1994).

    Google Scholar 

  66. Toomre, D. & Manstein, D.J. Lighting up the cell surface with evanescent wave microscopy. Trends Cell Biol. 11, 298–303 (2001).

    Article  CAS  Google Scholar 

  67. Tsien, R.Y. Imagining imaging's future. Nat. Rev. Mol. Cell. Biol. 4 (Suppl.), SS16–SS21 (2003).

    Google Scholar 

  68. Yuste, R., Lanni, F. & Konnerth, A. (eds.) Imaging neurons: A laboratory manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José-Angel Conchello.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Conchello, JA., Lichtman, J. Optical sectioning microscopy. Nat Methods 2, 920–931 (2005). https://doi.org/10.1038/nmeth815

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth815

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing