Review Article | Published:

Optical sectioning microscopy

Nature Methodsvolume 2pages920931 (2005) | Download Citation

Subjects

Abstract

Confocal scanning microscopy, a form of optical sectioning microscopy, has radically transformed optical imaging in biology. These devices provide a powerful means to eliminate from images the background caused by out-of-focus light and scatter. Confocal techniques can also improve the resolution of a light microscope image beyond what is achievable with widefield fluorescence microscopy. The quality of the images obtained, however, depends on the user's familiarity with the optical and fluorescence concepts that underlie this approach. We describe the core concepts of confocal microscopes and important variables that adversely affect confocal images. We also discuss data-processing methods for confocal microscopy and computational optical sectioning techniques that can perform optical sectioning without a confocal microscope.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).

  2. 2

    Minsky, M. (US patent 3013467, 1961).

  3. 3

    Minsky, M. Memoir on inventing the confocal scanning microscope. Scanning 10, 128–139 (1988).

  4. 4

    Conchello, J-A., Kim, J.J. & Hansen, E.W. Enhanced 3D reconstruction from confocal scanning microscope images. II: depth discrimination vs. signal-to-noise ratio in partially confocal images. Appl. Opt. 33, 3740–3750 (1994).

  5. 5

    Sandison, D.R., Piston, D., Williams, R.M. & Webb, W.W. Quantitative comparison of background rejection, signal-to-nose ratio, and resolution in confocal and full-field laser scanning microscopes. Appl. Opt. 34, 3576–3588 (1995).

  6. 6

    Tsien, R.Y. & Waggoner, A. Fluorophores for confocal microscopy. In Handbook of biological confocal microscopy (ed. Pawley, J.B.) 267–279 (Plenum Press, New York, 1995).

  7. 7

    Petràn, M., Hardvsky, M., Egger, M.D. & Galambos, R. Tandem scanning reflected-light microscope. J. Opt. Soc. Am. 58, 661–664 (1968).

  8. 8

    Petràn, M., Boyde, A. & Hardvsky, M. Direct view confocal microscopy. In Confocal Microscopy (ed. Wilson, T.) 245–284 (Academic Press, New York, 1990).

  9. 9

    Kino, G.S. & Xiao, G.Q. Real-time scanning microscopes. In Confocal Microscopy (ed. Wilson, T.) 361–388 (Academic Press, London, 1990).

  10. 10

    Lichtman, J.W. Confocal microscopy. Sci. Am. 271, 30–35 (1994).

  11. 11

    Lichtman, J.W. High-resolution imaging of synaptic structure with a simple confocal microscope. New Biol. 1, 75–82 (1989).

  12. 12

    Lichtman, J.W. & Sunderland, W.J. (Washington Univeristy; US patent 4884880, 1990).

  13. 13

    Inoué, S. & Inoué, T. Direct-view high-speed confocal scanner: The CSU-10. In Cell biological applications of confocal microscopy (ed. Matsumoto, B.) 88–128 (Academic Press, New York, 2002).

  14. 14

    Tanaami, T. et al. High-speed 1-frame/ms scanning confocal microscope with a microlens and a Nipkow disk. Appl. Opt. 41, 4704–4708 (2002).

  15. 15

    Conchello, J-A. & Lichtman, J.W. Theoretical analysis of a rotating-disk partially confocal scanning microscope. Appl. Opt. 33, 585–596 (1994).

  16. 16

    Stutz, G.E. Laser scanning system design. Photonics Spectra 24, 113–116 (1990).

  17. 17

    Tsien, R.Y. & Bacskai, B.J. Video-rate confocal microscopy. In Handbook of biological confocal microscopy (ed. Pawley, J.B.) 459–478 (Plenum Press, New York, 1995).

  18. 18

    Callamaras, N. & Parker, I. Construction of a confocal microscope for real-time x-y and x-z imaging. Cell Calcium 26, 271–279 (1999).

  19. 19

    Gratton, E. & vande Ven, M.J. Laser sources for confocal microscopy. In Handbook of biological confocal microscopy (ed. Pawley, J.B.) 69–97 (Plenum Press, New York, 1995).

  20. 20

    Sandison, D.R., Williams, R.M., Wells, K.S., Stricker, J. & Webb, W.W. Quantitative fluorescence confocal laser scanning microscopy (CLSM). In Handbook of biological confocal microscopy (ed. Pawley, J.B.) 39–53 (Plenum Press, New York, 1995).

  21. 21

    Srinath, M.D. & Rajasekaran, P.K. Statistical Signal Processing with Applications (John Willey and Sons, New York, 1979).

  22. 22

    Kay, S.M. Fundamentals of statistical signal processing (Prentice Hall, 1993).

  23. 23

    Lichtman, J. & Conchello, J.-A. Fluorescence microscopy. Nat. Methods 2, 910–919 (2005).

  24. 24

    Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

  25. 25

    Zimmermann, T. Spectral imaging and linear unmixing in light microscopy. In Microscopy techniques advances in biochemical engineering/biotechnology 95, 245–265 (2005).

  26. 26

    Zimmermann, T., Rietdorf, J. & Pepperkok, R. Spectral imaging and its applications in live cell microscopy. FEBS Lett. 546, 87–92 (2003).

  27. 27

    Zimmermann, T., Rietdorf, J., Girod, A., Georget, V. & Pepperkok, R. Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. FEBS Lett. 531, 245–249 (2002).

  28. 28

    Hiraoka, Y., Shimi, T. & Haraguchi, T. Multispectral imaging fluorescence microscopy for living cells. Cell Struct. Funct. 27, 367–374 (2002).

  29. 29

    Conchello, J.-A. An overview of three-dimensional and four-dimensional microscopy by computational deconvolution. In Cell Imaging-Methods Express (ed. Stevens, D.) 181–204 (2005).

  30. 30

    Preza, C., Miller, M.I. & Thomas, L.J. Jt. & McNally, J.G. Regularized linear method for reconstruction of three-dimensional microscopic objects from optical sections. J. Opt. Soc. Am. A 9, 219–228 (1992).

  31. 31

    Frieden, B.R. Probability, statistical optics, and data testing. 206–210 (Springer-Verlag, Berlin, Germany, 1982).

  32. 32

    McNally, J.G., Preza, C., Conchello, J-A. & Thomas, L.J., Jr. Artifacts in computational optical sectioning microscopy. J. Opt. Soc. Am. A 11, 1056–1067 (1994).

  33. 33

    Frieden, B.R. Image enhancement and restoration. In Picture processing and image filtering (ed. Huang, T.S.) 179–248 (Springer-Verlag, New York, 1975).

  34. 34

    Agard, D.A. Optical sectioning microscopy. Annu. Rev. Biophys. Bioeng. 13, 191–219 (1984).

  35. 35

    Carrington, W.A. Image restoration in 3D microscopy with limited data in Bioimaging and two-dimensional spectroscopy (ed. Smith, L.C.) 72–83 (SPIE Press, Bellingham, Washington, 1990).

  36. 36

    Carrington, W.A. & Fogarty, K.E. (US patent 5047968, 1991).

  37. 37

    Holmes, T.J. Maximum-likelihood image restoration adapted for noncoherent optical imaging. J. Opt. Soc. Am. A 5, 666–673 (1988).

  38. 38

    Holmes, T.J. & Liu, Y-H. Richardson-Lucy/maximum likelihood image restoration algorithm for fluorescence microscopy: further testing. Appl. Opt. 28, 4930–4938 (1989).

  39. 39

    Conchello, J-A. Super-resolution and convergence properties of the expectation maximization for maximum-likelihood deconvolution of incoherent images. J. Opt. Soc. Am. A 15, 2609–2619 (1998).

  40. 40

    Conchello, J-A. & Hansen, E.W. Enhanced 3D reconstruction from confocal scanning microscope images I: Deterministic and maximum likelihood reconstructions. Appl. Opt. 29, 3795–3804 (1990).

  41. 41

    Dempster, A.P., Laird, N.M. & Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39 1–38 (1977).

  42. 42

    Markham, J. & Conchello, J-A. Fast maximum-likelihood image restoration algorithms for three-dimensional fluorescence microscopy. J. Opt. Soc. Am. A 18, 1062–1071 (2001).

  43. 43

    Hanley, Q.S., Verveer, P.J. & Jovin, T.M. Optical sectioning fluorescence spectroscopy in a progammagle array microscope. Appl. Spectrosc. 52, 783–789 (1998).

  44. 44

    Verveer, P.J., Hanley, Q.S., Verbeek, P.W., van Vliet, L.J. & Jovin, T.M. Theory of confocal fluorescence imaging in the programmable array microscope (PAM). J. Microsc. 189, 192–198 (1998).

  45. 45

    Wilson, T., Juskaitis, R., Neil, M.A.A. & Kozubek, M. Confocal microscopy by aperture correlation. Opt. Lett. 21, 1879–1881 (1996).

  46. 46

    Dixon, T. Microscopy - Random mask brightness image. Nature 383, 760–761 (1996).

  47. 47

    Neil, M.A.A., Juškaitis, R. & Wilson, T. Method for obtaining sectioning by using structured light in a conventional microscope. Opt. Lett. 25, 1361–1363 (1997).

  48. 48

    Wilson, T., Neil, M.A.A. & Juškaitis, R. Optically Sectioned images in wide-field fluorescence microscopy. In Three-dimensional and multidimensional microscopy: Image Acquisition and Processing V (eds. Cogswell, C.J., Conchello, J.-A., Lerner, J.M., Lu, T. & Wilson, T.) 4–6 (SPIE Press, Bellingham, Washington, 1998).

  49. 49

    Gustafsson, M.G.L., Agard, D.A. & Sedat, J.W. Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination. In Three-dimensional and multidimensional microscopy: image acquisition and processing VII (eds. Conchello, J.-A., Cogswell, C.J. & Wilson, T.) 141–150 (SPIE Press, Belingham, WA, 2000).

  50. 50

    Gustafsson, M.G.L., Agard, D.A. & Sedat, J.W. Surpasing the lateral resolution by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000).

  51. 51

    Neil, M.A.A., Juškaitis, R. & Wilson, T. Real time 3D fluorescence microscopy by two beam interferece illumination. Opt. Commun. 153, 1–4 (1998).

  52. 52

    Neil, M.A.A., Juškaitis, R. & Wilson, T. A light efficient optically sectioning microscope. J. Microsc. 189, 114–117 (1998).

  53. 53

    Wilson, T., Neil, M.A.A. & Juškaitis, R. Real-time three-dimensional imaging of macroscopic structures. J. Microsc. 191, 116–118 (1998).

  54. 54

    Gustafsson, M.G.L. Extended resolution fluorescence microscopy. Curr. Opin. Struct. Biol. 9, 627–634 (1999).

  55. 55

    Fedosseev, R., Belyaev, Y., Frohn, J. & Stemmer, A. Structured light illumination for extended resolution in fluorescence microscopy. Opt. Lasers Eng. 43, 403–314 (2005).

  56. 56

    Conn, P.M. (ed.) Confocal Microscopy (Academic Press, New York, 1999).

  57. 57

    Diaspro, A. (ed.). Confocal and two-photon microscopy: Foundations, applications and advances. (John Wiley and Sons, New York, 2001).

  58. 58

    Inoué, S. & Spring, K.R. Video Microscopy. The Fundamentals (Plenum Press, New York, 1997).

  59. 59

    Matsumoto, B. (ed.). Cell biological applications of confocal microscopy (Academic Press, New York, 2003).

  60. 60

    Murphy, D.B. Fundamentals of light microscopy and electronic imaging (Wiley-Liss, New York, 2001).

  61. 61

    Pawley, J.B. (ed.). Handbook of biological confocal microscopy (Plenum Press, New York, 1995).

  62. 62

    Paddock, S. (ed.). Confocal Microscopy (Oxford University Press, Oxford, 2001).

  63. 63

    Periasamy, A. (ed.). Methods in Cellular Imaging (Oxford University Press, Oxford, 2001).

  64. 64

    Sheppard, C.J.R. & Shotton, D.M. Confocal Laser Scanning Microscopy (BIOS Scientific Publisers, Oxford, 1997).

  65. 65

    Stevens, J.K., Mills, L.R. & Trogadis, J.E. Three-dimensinoal confocal microscopy: Volume investigation of biological systems (Academic Press, New York, 1994).

  66. 66

    Toomre, D. & Manstein, D.J. Lighting up the cell surface with evanescent wave microscopy. Trends Cell Biol. 11, 298–303 (2001).

  67. 67

    Tsien, R.Y. Imagining imaging's future. Nat. Rev. Mol. Cell. Biol. 4 (Suppl.), SS16–SS21 (2003).

  68. 68

    Yuste, R., Lanni, F. & Konnerth, A. (eds.) Imaging neurons: A laboratory manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2000).

Download references

Author information

Affiliations

  1. Molecular, Cell, and Developmental Biology, Oklahoma Medical Research Foundation, Oklahoma City, 73104, Oklahoma, USA

    • José-Angel Conchello
  2. Program in Biomedical Engineering, University of Oklahoma, Norman, 73019, Oklahoma, USA

    • José-Angel Conchello
  3. Molecular and Cell Biology Department, Harvard University, Cambridge, 02138, Massachusetts, USA

    • Jeff W Lichtman

Authors

  1. Search for José-Angel Conchello in:

  2. Search for Jeff W Lichtman in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to José-Angel Conchello.

About this article

Publication history

Published

Issue Date

DOI

https://doi.org/10.1038/nmeth815

Further reading