Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Versatile fluorescent derivatization of glycans for glycomic analysis

Abstract

The new field of functional glycomics encompasses information about both glycan structure and recognition by carbohydrate-binding proteins (CBPs) and is now being explored through glycan array technology. Glycan array construction, however, is limited by the complexity of efficiently generating derivatives of free, reducing glycans with primary amines for conjugation. Here we describe a straightforward method to derivatize glycans with 2,6-diaminopyridine (DAP) to generate fluorescently labeled glycans (glycan-DAP conjugates or GDAPs) that contain a primary amine for further conjugation. We converted a wide variety of glycans, including milk sugars, N-glycans, glycosaminoglycans and chitin-derived glycans, to GDAPs, as verified by HPLC and mass spectrometry. We covalently conjugated GDAPs to N-hydroxysuccinimide (NHS)-activated glass slides, maleimide-activated protein, carboxylated microspheres and NHS-biotin to provide quantifiable fluorescent derivatives. All types of conjugated glycans were well-recognized by appropriate CBPs. Thus, GDAP derivatives provide versatile new tools for biologists to quantify and covalently capture minute quantities of glycans for exploring their structures and functions and generating new glycan arrays from naturally occurring glycans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The derivatization of free glycans with DAP.
Figure 2: Preparation and analyses of various GDAPs.
Figure 3: The derivatization of complex-type N-glycans with DAP and biotinylation of LNnT-DAP.
Figure 4: Functional recognition of GDAP conjugates by CBPs.
Figure 5: Preparation of a glycan-DAP-protein conjugate.
Figure 6: Preparation of a glycan-DAP microarray with selected GDAPs.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Ratner, D.M. et al. Probing protein-carbohydrate interactions with microarrays of synthetic oligosaccharides. ChemBioChem 5, 379–382 (2004).

    Article  CAS  Google Scholar 

  2. Blixt, O. et al. Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. USA 101, 17033–17038 (2004).

    Article  CAS  Google Scholar 

  3. Adams, E.W. et al. Oligosaccharide and glycoprotein microarrays as tools in HIV glycobiology; glycan-dependent gp120/protein interactions. Chem. Biol. 11, 875–881 (2004).

    Article  CAS  Google Scholar 

  4. Feizi, T., Fazio, F., Chai, W. & Wong, C.H. Carbohydrate microarrays—a new set of technologies at the frontiers of glycomics. Curr. Opin. Struct. Biol. 13, 637–645 (2003).

    Article  CAS  Google Scholar 

  5. Galanina, O.E., Mecklenburg, M., Nifantiev, N.E., Pazynina, G.V. & Bovin, N.V. GlycoChip: multiarray for the study of carbohydrate-binding proteins. Lab Chip 3, 260–265 (2003).

    Article  CAS  Google Scholar 

  6. Ni, J., Singh, S. & Wang, L.X. Synthesis of maleimide-activated carbohydrates as chemoselective tags for site-specific glycosylation of peptides and proteins. Bioconjug. Chem. 14, 232–238 (2003).

    Article  CAS  Google Scholar 

  7. Schwarz, M. et al. A new kind of carbohydrate array, its use for profiling antiglycan antibodies, and the discovery of a novel human cellulose-binding antibody. Glycobiology 13, 749–754 (2003).

    Article  CAS  Google Scholar 

  8. Nimrichter, L. et al. Intact cell adhesion to glycan microarrays. Glycobiology 14, 197–203 (2004).

    Article  CAS  Google Scholar 

  9. Shin, I., Park, S. & Lee, M.R. Carbohydrate microarrays: an advanced technology for functional studies of glycans. Chemistry 11, 2894–2901 (2005).

    Article  CAS  Google Scholar 

  10. Wang, D. Carbohydrate microarrays. Proteomics 3, 2167–2175 (2003).

    Article  CAS  Google Scholar 

  11. Willats, W.G., Rasmussen, S.E., Kristensen, T., Mikkelsen, J.D. & Knox, J.P. Sugar-coated microarrays: a novel slide surface for the high-throughput analysis of glycans. Proteomics 2, 1666–1671 (2002).

    Article  CAS  Google Scholar 

  12. Nakabayashi, S., Warren, C.D. & Jeanloz, R.W. The preparation of a partially protected heptasaccharide-asparagine intermediate for glycopeptide synthesis. Carbohydr. Res. 174, 279–289 (1988).

    Article  CAS  Google Scholar 

  13. Likhosherstov, L.M., Novikova, V.A., Dervitskaya, V.A. & Kochetkov, N.K. A new simple synthesis of amino sugar β-D-glycosylamines. Carbohydr. Res. 146, C1–C5 (1986).

    Article  CAS  Google Scholar 

  14. Vetter, D. & Gallop, M.A. Strategies for the synthesis and screening of glycoconjugates. 1. A library of glycosylamines. Bioconjug. Chem. 6, 316–318 (1995).

    Article  CAS  Google Scholar 

  15. Da Silva, M.L., Tamura, T., McBroom, T. & Rice, K.G. Tyrosine derivatization and preparative purification of the sialyl and asialy-N-linked oligosaccharides from porcine fibrinogen. Arch. Biochem. Biophys. 312, 151–157 (1994).

    Article  CAS  Google Scholar 

  16. Likhosherstov, L.M., Novikova, O.S. & Shibaev, V.N. New efficient synthesis of β-glucosylamines of mono- and disaccharides with the use of ammonium carbamate. Dokl. Chem. 383, 89–92 (2002).

    Article  CAS  Google Scholar 

  17. Bigge, J.C. et al. Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal. Biochem. 230, 229–238 (1995).

    Article  CAS  Google Scholar 

  18. Tomiya, N. et al. Structural analysis of N-linked oligosaccharides by a combination of glycopeptidase, exoglycosidases, and high-performance liquid chromatography. Anal. Biochem. 163, 489–499 (1987).

    Article  CAS  Google Scholar 

  19. Locke, D. et al. Neutral, acidic, and basic derivatives of anthranilamide that confer different formal charge to reducing oligosaccharides. Carbohydr. Res. 339, 221–231 (2004).

    Article  CAS  Google Scholar 

  20. Watanabe, T., Inoue, N., Kutsukake, T., Matsuki, S. & Takeuchi, M. Labeling conditions using a 2-aminobenzamide reagent for quantitative analysis of sialo-oligosaccharides. Biol. Pharm. Bull. 23, 269–273 (2000).

    Article  CAS  Google Scholar 

  21. Gray, G.R. The direct coupling of oligosaccharides to proteins and derivatized gels. Arch. Biochem. Biophys. 163, 426–428 (1974).

    Article  CAS  Google Scholar 

  22. Rothenberg, B.E., Hayes, B.K., Toomre, D., Manzi, A.E. & Varki, A. Biotinylated diaminopyridine: an approach to tagging oligosaccharides and exploring their biology. Proc. Natl. Acad. Sci. USA 90, 11939–11943 (1993).

    Article  CAS  Google Scholar 

  23. Torres, B.V., McCrumb, D.K. & Smith, D.F. Glycolipid-lectin interactions: reactivity of lectins from Helix pomatia, Wisteria floribunda, and Dolichos biflorus with glycolipids containing N-acetylgalactosamine. Arch. Biochem. Biophys. 262, 1–11 (1988).

    Article  CAS  Google Scholar 

  24. Nyame, K., Smith, D.F., Damian, R.T. & Cummings, R.D. Complex-type asparagine-linked oligosaccharides in glycoproteins synthesized by Schistosoma mansoni adult males contain terminal beta-linked N-acetylgalactosamine. J. Biol. Chem. 264, 3235–3243 (1989).

    CAS  PubMed  Google Scholar 

  25. Yago, T. et al. Distinct molecular and cellular contributions to stabilizing selectin-mediated rolling under flow. J. Cell Biol. 158, 787–799 (2002).

    Article  CAS  Google Scholar 

  26. Privat, J.P., Delmotte, F., Mialonier, G., Bouchard, P. & Monsigny, M. Fluorescence studies of saccharide binding to wheat-germ agglutinin (lectin). Eur. J. Biochem. 47, 5–14 (1974).

    Article  CAS  Google Scholar 

  27. Lee, C.J., Lee, L.H., Lu, C.S. & Wu, A. Bacterial polysaccharides as vaccines–immunity and chemical characterization. Adv. Exp. Med. Biol. 491, 453–471 (2001).

    Article  CAS  Google Scholar 

  28. Nyame, A.K., Kawar, Z.S. & Cummings, R.D. Antigenic glycans in parasitic infections: implications for vaccines and diagnostics. Arch. Biochem. Biophys. 426, 182–200 (2004).

    Article  CAS  Google Scholar 

  29. Keding, S.J. & Danishefsky, S.J. Prospects for total synthesis: a vision for a totally synthetic vaccine targeting epithelial tumors. Proc. Natl. Acad. Sci. USA 101, 11937–11942 (2004).

    Article  CAS  Google Scholar 

  30. Pozsgay, V. Oligosaccharide-protein conjugates as vaccine candidates against bacteria. Adv. Carbohydr. Chem. Biochem. 56, 153–199 (2000).

    Article  CAS  Google Scholar 

  31. Nyame, A.K., Leppanen, A.M., DeBose-Boyd, R. & Cummings, R.D. Mice infected with Schistosoma mansoni generate antibodies to LacdiNAc (GalNAc β 1 → 4GlcNAc) determinants. Glycobiology 9, 1029–1035 (1999).

    Article  CAS  Google Scholar 

  32. Merkle, R.K. & Cummings, R.D. Lectin affinity chromatography of glycopeptides. Methods Enzymol. 138, 232–259 (1987).

    Article  CAS  Google Scholar 

  33. Hase, S. Analysis of sugar chains by pyridylamination. Methods Mol. Biol. 14, 69–80 (1993).

    CAS  PubMed  Google Scholar 

  34. Toomre, D.K. & Varki, A. Advances in the use of biotinylated diaminopyridine (BAP) as a versatile fluorescent tag for oligosaccharides. Glycobiology 4, 653–663 (1994).

    Article  CAS  Google Scholar 

  35. Merry, A.H. et al. Recovery of intact 2-aminobenzamide-labeled O-glycans released from glycoproteins by hydrazinolysis. Anal. Biochem. 304, 91–99 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health Grant HL065509 to G.P.S. and also supported in part by the Consortium for Functional Glycomics under National Institute of General Medical Sciences, US National Institutes of Health Grant GM62116. We thank A. Lee for help with glycan array analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D Cummings.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Examples of glycans used in the study. (PDF 331 kb)

Supplementary Fig. 2

ESI-MS/MS spectra for GlcNAc2-DAP. (PDF 397 kb)

Supplementary Fig. 3

Identification and quantification of DAP on NHS-activated glass slides. (PDF 420 kb)

Supplementary Fig. 4

Free N-glycans analyzed by MALDI-TOF-MS before and after conjugation with DAP. (PDF 319 kb)

Supplementary Fig. 5

A mixture of free high mannose-type N-glycans Man5GlcNAc2 through Man9GlcNAc2. (PDF 329 kb)

Supplementary Fig. 6

Free hyaluronic acid-derived oligosaccharides analyzed by MALDI-TOF-MS before and after conjugation with DAP. (PDF 343 kb)

Supplementary Fig. 7

Free hyaluronic acid-derived oligosaccharides labeled with DAP or 2-AB and analyzed by HPLC. (PDF 270 kb)

Supplementary Fig. 8

Separation of mucin-derived O-glycan GDAPs by HPLC. (PDF 313 kb)

Supplementary Methods (PDF 117 kb)

Supplementary Data (PDF 70 kb)

Supplementary Discussion (PDF 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, B., Kawar, Z., Ju, T. et al. Versatile fluorescent derivatization of glycans for glycomic analysis. Nat Methods 2, 845–850 (2005). https://doi.org/10.1038/nmeth808

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth808

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing