Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid neurotransmitter uncaging in spatially defined patterns

This article has been updated


Light-sensitive 'caged' molecules provide a means of rapidly and noninvasively manipulating biochemical signals with submicron spatial resolution. Here we describe a new optical system for rapid uncaging in arbitrary patterns to emulate complex neural activity. This system uses TeO2 acousto-optical deflectors to steer an ultraviolet beam rapidly and can uncage at over 20,000 locations per second. The uncaging beam is projected into the focal plane of a two-photon microscope, allowing us to combine patterned uncaging with imaging and electrophysiology. By photolyzing caged neurotransmitter in brain slices we can generate precise, complex activity patterns for dendritic integration. The method can also be used to activate many presynaptic neurons at once. Patterned uncaging opens new vistas in the study of signal integration and plasticity in neuronal circuits and other biological systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A system for patterned uncaging and two-photon imaging.
Figure 2: Using patterned uncaging to emulate dendritic integration.
Figure 3: Local amplification of glutamate responses in pyramidal neuron dendrites.
Figure 4: Repeatability of responses to patterned activation of multiple dendrites.
Figure 5: Patterned activation of presynaptic cells.

Similar content being viewed by others

Change history

  • 28 November 2005

    In the version of this article initially published online, Supplementary Videos 1 and 2 were in AVI format. These videos have been replaced with new versions in MOV format.


  1. Polsky, A., Mel, B.W. & Schiller, J. Computational subunits in thin dendrites of pyramidal cells. Nat. Neurosci. 7, 621–627 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. London, M. & Segev, I. Synaptic scaling in vitro and in vivo. Nat. Neurosci. 4, 853–855 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Adams, S.R. & Tsien, R.Y. Controlling cell chemistry with caged compounds. Annu. Rev. Physiol. 55, 755–784 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Callaway, E.M. & Yuste, R. Stimulating neurons with light. Curr. Opin. Neurobiol. 12, 587–592 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Heidelberger, R., Heinemann, C., Neher, E. & Matthews, G. Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371, 513–515 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. DelPrincipe, F., Egger, M. & Niggli, E. Calcium signalling in cardiac muscle: refractoriness revealed by coherent activation. Nat. Cell Biol. 1, 323–329 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Jones, K.T. & Nixon, V.L. Sperm-induced Ca2+ oscillations in mouse oocytes and eggs can be mimicked by photolysis of caged inositol 1,4,5-trisphosphate: evidence to support a continuous low level production of inositol 1,4,5-trisphosphate during mammalian fertilization. Dev. Biol. 225, 1–12 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Echevarría, W., Leite, M.F., Guerra, M.T., Zipfel, W.R. & Nathanson, M.H. Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum. Nat. Cell Biol. 5, 440–446 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Goard, M. et al. Light-mediated inhibition of protein synthesis. Chem. Biol. 12, 685–693 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Bullen, A., Patel, S.S. & Saggau, P. High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators. Biophys. J. 73, 477–491 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saggau, P., Bullen, A. & Patel, S.S. Acousto-optic random-access laser scanning microscopy: fundamentals and applications to optical recording of neuronal activity. Cell Mol. Biol. 44, 827–846 (1998).

    CAS  PubMed  Google Scholar 

  12. Shepherd, G.M., Pologruto, T.A. & Svoboda, K. Circuit analysis of experience-dependent plasticity in the developing rat barrel cortex. Neuron 38, 277–289 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Matsuzaki, M., Honkura, N., Ellis-Davies, G.C.R. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Tsai, P.S. et al. Principles, design and construction of a two-photon laser-scanning microscope for in vitro and in vivo studies. In In vivo optical imaging of brain function (ed. Frostig, R.D.) 113–171 (CRC Press, Boca Raton, Florida, USA, 2002).

    Google Scholar 

  16. Iyer, V., Losavio, B.E. & Saggau, P. Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy. J. Biomed. Opt. 8, 460–471 (2003).

    Article  PubMed  Google Scholar 

  17. Bliton, A.C. & Lechleiter, J.D. Optical considerations at ultraviolet wavelengths in confocal microscopy. In Handbook of biological confocal microscopy (ed. Pawley, J.B.) 431–444 (2nd edn.Plenum Press, New York, 1995).

    Chapter  Google Scholar 

  18. Brown, E. & Webb, W. Two-photon activation of caged calcium with submicron, submillisecond resolution. in Caged Compounds. Methods of Enzymology. (ed. Marriott, G.) 291, 356–380 (Academic Press, San Diego, 1998).

    Chapter  Google Scholar 

  19. Papageorgiou, G. & Corrie, J.E.T. Effects of aromatic substituents on the photocleavage of 1-acyl-7-nitroindolines. Tetrahedron 56, 8197–8205 (2000).

    Article  CAS  Google Scholar 

  20. Canepari, M., Nelson, L., Papageorgiou, G., Corrie, J.E. & Ogden, D. Photochemical and pharmacological evaluation of 7-nitroindolinyl-and 4-methoxy-7-nitroindolinyl-amino acids as novel, fast caged neurotransmitters. J. Neurosci. Methods 112, 29–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4, 1086–1092 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smith, M.A., Ellis-Davies, G.C. & Magee, J.C. Mechanism of the distance-dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons. J. Physiol. (Lond.) 548, 245–258 (2003).

    Article  CAS  Google Scholar 

  23. O'Connor, D.H., Wittenberg, G.M. & Wang, S.S-H. Graded bidirectional synaptic plasticity is composed of switch-like unitary events. Proc. Natl. Acad. Sci. USA 102, 9679–9684 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schiller, J. & Schiller, Y. NMDA receptor-mediated dendritic spikes and coincident signal amplification. Curr. Opin. Neurobiol. 11, 343–348 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Callaway, E.M. & Katz, L.C. Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc. Natl. Acad. Sci. USA 90, 7661–7665 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barbour, B. Synaptic currents evoked in Purkinje cells by stimulating individual granule cells. Neuron 11, 759–769 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Chadderton, P., Margrie, T.W. & Häusser, M. Integration of quanta in cerebellar granule cells during sensory processing. Nature 428, 856–860 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Isope, P., Franconville, R., Barbour, B. & Ascher, P. Repetitive firing of rat cerebellar parallel fibres after a single stimulation. J. Physiol. (Lond.) 554, 829–839 (2004).

    Article  CAS  Google Scholar 

  29. Kandler, K., Katz, L.C. & Kauer, J.A. Focal photolysis of caged glutamate produces long-term depression of hippocampal glutamate receptors. Nat. Neurosci. 1, 119–123 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Dodt, H., Eder, M., Frick, A. & Zieglgansberger, W. Precisely localized LTD in the neocortex revealed by infrared-guided laser stimulation. Science 286, 110–113 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Eder, M., Zieglgansberger, W. & Dodt, H.U. Neocortical long-term potentiation and long-term depression: site of expression investigated by infrared-guided laser stimulation. J. Neurosci. 22, 7558–7568 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Abbott, L.F. & Nelson, S.B. Synaptic plasticity: taming the beast. Nat. Neurosci. 3, 1178–1183 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Froemke, R.C., Poo, M-m. & Dan, Y. Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature 434, 221–225 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Stuart, G.J. & Häusser, M. Dendritic coincidence detection of EPSPs and action potentials. Nat. Neurosci. 4, 63–71 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Koh, I.Y., Lindquist, W.B., Zito, K., Nimchinsky, E.A. & Svoboda, K. An image analysis algorithm for dendritic spines. Neural Comput. 14, 1283–1310 (2002).

    Article  PubMed  Google Scholar 

  36. Hyland, B.I., Reynolds, J.N., Hay, J., Perk, C.G. & Miller, R. Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114, 475–492 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Brivanlou, I.H., Dantzker, J.L., Stevens, C.F. & Callaway, E.M. Topographic specificity of functional connections from hippocampal CA3 to CA1. Proc. Natl. Acad. Sci. USA 101, 2560–2565 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Horch, K.W. & Dhillon, G.S. (eds.). Neuroprosthetics: theory and practice (World Scientific, New Jersey, 2004).

    Book  Google Scholar 

Download references


This work was supported by grants from the Princeton Center for Photonics and Optoelectronic Materials, the US National Institutes of Health, the National Science Foundation (NSF), and the W.M. Keck Foundation to S.S.-H.W., a Lewis Thomas fellowship to S.S., an NSF Graduate Research Fellowship to D.H.O. and a Burroughs-Wellcome Interfaces of Science fellowship to D.V.S. We thank J. Soos from Brimrose Corp. for designing the AOD device and K. Visscher, M. McDonald, J. Puchalla, G. Wittenberg, G. Major and T. Adelman for advice and discussion.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Samuel S-H Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Axial and lateral resolution depends on depth in brain slices. (PDF 82 kb)

Supplementary Fig. 2

Patterned uncaging and fluorescence measurement of intracellular calcium signals. (PDF 112 kb)

Supplementary Video 1

Current summation in a pyramidal neuron. In the first video segment, uncaging locations are shown in blue on a two-photon image of a dye-filled CA1 pyramidal neuron. Voltage-clamp current responses to a complex uncaging pattern are highly reproducible when the stimulation pattern is repeated (first three current traces, shown in color). In contrast, the current response is different when a new stimulation pattern with the same mean rate is delivered across the same dendritic locations (fourth current trace, shown in black). In the second video segment, a freely-spiking pyramidal neuron shows highly reproducible voltage responses to identical stimuli (first three voltage traces, shown in color). A different stimulus with the same mean rate gives a different voltage response (fourth voltage trace, shown in black). (MOV 1779 kb)

Supplementary Video 2

IP3 uncaging in a Purkinje neuron. Ca2+ release responses are shown after patterned release of caged IP3 at six locations in a rat cerebellar Purkinje neuron. The Purkinje cell was filled through a patch-pipette with 100 μM double-caged IP3 and 300 μM of the Ca2+-sensitive dye fluo-5F, and imaged with a two-photon microscope at a rate of 32 ms per frame. The first segment of the video shows responses to uncaging at 1-second intervals. The second segment shows responses to uncaging at the same locations at 320-millisecond intervals. (MOV 1735 kb)

Supplementary Data 1

Axial resolution in brain slices. (PDF 24 kb)

Supplementary Data 2

Calcium release in response to focal uncaging. (PDF 25 kb)

Supplementary Note

Optical system description and plan. (PDF 269 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shoham, S., O'Connor, D., Sarkisov, D. et al. Rapid neurotransmitter uncaging in spatially defined patterns. Nat Methods 2, 837–843 (2005).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing