Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A microfluidic culture platform for CNS axonal injury, regeneration and transport

Abstract

Investigation of axonal biology in the central nervous system (CNS) is hindered by a lack of an appropriate in vitro method to probe axons independently from cell bodies. Here we describe a microfluidic culture platform that polarizes the growth of CNS axons into a fluidically isolated environment without the use of targeting neurotrophins. In addition to its compatibility with live cell imaging, the platform can be used to (i) isolate CNS axons without somata or dendrites, facilitating biochemical analyses of pure axonal fractions and (ii) localize physical and chemical treatments to axons or somata. We report the first evidence that presynaptic (Syp) but not postsynaptic (Camk2a) mRNA is localized to developing rat cortical and hippocampal axons. The platform also serves as a straightforward, reproducible method to model CNS axonal injury and regeneration. The results presented here demonstrate several experimental paradigms using the microfluidic platform, which can greatly facilitate future studies in axonal biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The microfluidic-based culture platform directs axonal growth of CNS neurons and fluidically isolates axons.
Figure 2: Axons are isolated without somata or dendrites.
Figure 3: RNA encoding the presynaptic vesicle protein synaptophysin is localized to CNS axons at 6 d in vitro.
Figure 4: Axotomy leads to rapid transcription of immediate early genes and regeneration is enhanced by axonal neurotrophin treatment.
Figure 5: Axons can be cocultured with other cell types such as oligodendrocytes.

Similar content being viewed by others

References

  1. Terry, R. et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580 (1991).

    Article  CAS  Google Scholar 

  2. McKerracher, L. Spinal cord repair: strategies to promote axon regeneration. Neurobiol. Dis. 8, 11–18 (2001).

    Article  CAS  Google Scholar 

  3. Medana, I.M. & Esiri, M.M. Axonal damage: a key predictor of outcome in human CNS diseases. Brain 126, 515–530 (2003).

    Article  CAS  Google Scholar 

  4. Salehi, A., Delcroix, J.D. & Mobley, W.C. Traffic at the intersection of neurotrophic factor signaling and neurodegeneration. Trends Neurosci. 26, 73–80 (2003).

    Article  CAS  Google Scholar 

  5. MacInnis, B.L. & Campenot, R.B. Retrograde support of neuronal survival without retrograde transport of nerve growth factor. Science 295, 1536–1539 (2002).

    Article  CAS  Google Scholar 

  6. Campenot, R.B. Local control of neurite development by nerve growth factor. Proc. Natl. Acad. Sci. USA 74, 4516–4519 (1977).

    Article  CAS  Google Scholar 

  7. Hayashi, H., Campenot, R.B., Vance, D.E. & Vance, J.E. Glial lipoproteins stimulate axon growth of central nervous system neurons in compartmented cultures. J. Biol. Chem. 279, 14009–14015 (2004).

    Article  CAS  Google Scholar 

  8. Bertrand, J., Winton, M.J., Rodriguez-Hernandez, N., Campenot, R.B. & McKerracher, L. Application of rho antagonist to neuronal cell bodies promotes neurite growth in compartmented cultures and regeneration of retinal ganglion cell axons in the optic nerve of adult rats. J. Neurosci. 25, 1113–1121 (2005).

    Article  CAS  Google Scholar 

  9. Ivins, K.J., Bui, E.T. & Cotman, C.W. β-amyloid induces local neurite degeneration in cultured hippocampal neurons: evidence for neuritic apoptosis. Neurobiol. Dis. 5, 365–378 (1998).

    Article  CAS  Google Scholar 

  10. Jeon, N.L. et al. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 20, 826–830 (2002).

    Article  CAS  Google Scholar 

  11. Tourovskaia, A., Figueroa-Masot, X. & Folch, A. Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies. Lab Chip 5, 14–19 (2005).

    Article  CAS  Google Scholar 

  12. Chung, B.G. et al. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 5, 401–406 (2005).

    Article  CAS  Google Scholar 

  13. Hung, P.J., Lee, P.J., Sabounchi, P., Lin, R. & Lee, L.P. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol. Bioeng. 89, 1–8 (2005).

    Article  CAS  Google Scholar 

  14. Gu, W., Zhu, X., Futai, N., Cho, B.S. & Takayama, S. Computerized microfluidic cell culture using elastomeric channels and Braille displays. Proc. Natl. Acad. Sci. USA 101, 15861–15866 (2004).

    Article  CAS  Google Scholar 

  15. Whitesides, G.M., Ostuni, E., Takayama, S., Jiang, X. & Ingber, D.E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001).

    Article  CAS  Google Scholar 

  16. Sia, S.K. & Whitesides, G.M. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24, 3563–3576 (2003).

    Article  CAS  Google Scholar 

  17. Park, T.H. & Shuler, M.L. Integration of cell culture and microfabrication technology. Biotechnol. Prog. 19, 243–253 (2003).

    Article  CAS  Google Scholar 

  18. Andersson, H. & van den Berg, A. Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities. Lab Chip 4, 98–103 (2004).

    Article  CAS  Google Scholar 

  19. Beebe, D.J., Mensing, G.A. & Walker, G.M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4, 261–286 (2002).

    Article  CAS  Google Scholar 

  20. Peterman, M.C. et al. The Artificial Synapse Chip: a flexible retinal interface based on directed retinal cell growth and neurotransmitter stimulation. Artif. Organs 27, 975–985 (2003).

    Article  CAS  Google Scholar 

  21. Prasad, S., Zhang, X., Yang, M., Ozkan, C.S. & Ozkan, M. Neurons as sensors: individual and cascaded chemical sensing. Biosens. Bioelectron. 19, 1599–1610 (2004).

    Article  CAS  Google Scholar 

  22. Piper, M. & Holt, C. RNA translation in axons. Annu. Rev. Cell Dev. Biol. 20, 505–523 (2004).

    Article  CAS  Google Scholar 

  23. Taylor, A.M. et al. Microfluidic multicompartment device for neuroscience research. Langmuir 19, 1551–1556 (2003).

    Article  CAS  Google Scholar 

  24. Rhee, S.W. et al. Patterned cell culture inside microfluidic devices. Lab Chip 5, 102–107 (2005).

    Article  CAS  Google Scholar 

  25. Dotti, C.G., Sullivan, C.A. & Banker, G.A. The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 8, 1454–1468 (1988).

    Article  CAS  Google Scholar 

  26. Brittis, P.A., Lu, Q. & Flanagan, J.G. Axonal protein synthesis provides a mechanism for localized regulation at an intermediate target. Cell 110, 223–235 (2002).

    Article  CAS  Google Scholar 

  27. Steward, O. & Halpain, S. Lamina-specific synaptic activation causes domain-specific alterations in dendritic immunostaining for MAP2 and CAM kinase II. J. Neurosci. 19, 7834–7845 (1999).

    Article  CAS  Google Scholar 

  28. Weiser, M., Baker, H., Wessel, T.C. & Joh, T.H. Axotomy-induced differential gene induction in neurons of the locus ceruleus and substantia nigra. Brain Res. Mol. Brain Res. 17, 319–327 (1993).

    Article  CAS  Google Scholar 

  29. Zhang, X. & Poo, M.M. Localized synaptic potentiation by BDNF requires local protein synthesis in the developing axon. Neuron 36, 675–688 (2002).

    Article  CAS  Google Scholar 

  30. Pearse, D.D. et al. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat. Med. 10, 610–616 (2004).

    Article  CAS  Google Scholar 

  31. Filbin, M.T. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat. Rev. Neurosci. 4, 703–713 (2003).

    Article  CAS  Google Scholar 

  32. Chen, M.S. et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434–439 (2000).

    Article  CAS  Google Scholar 

  33. Silver, J. & Miller, J.H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5, 146–156 (2004).

    Article  CAS  Google Scholar 

  34. Lu, P., Yang, H., Jones, L.L., Filbin, M.T. & Tuszynski, M.H. Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. J. Neurosci. 24, 6402–6409 (2004).

    Article  CAS  Google Scholar 

  35. McCarthy, K.D. & de Vellis, J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85, 890–902 (1980).

    Article  CAS  Google Scholar 

  36. Jareb, M. & Banker, G. The polarized sorting of membrane proteins expressed in cultured hippocampal neurons using viral vectors. Neuron 20, 855–867 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Poon for help with the radioisotope study. We thank A. Anderson and W. Saadi for reviewing the manuscript. This work was partially funded by the National Institutes of Health (AG-000538, AG-20241, NS-40953 and NS-50895) and the CRPF. A.M.T. thanks the National Institutes of Health for a predoctoral fellowship award (F31NS046208-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noo Li Jeon.

Ethics declarations

Competing interests

The authors have applied for a patent which covers the device described in the article.

Supplementary information

Supplementary Fig. 1

The microfluidic platform facilitates live imaging of axonal transport. (PDF 55 kb)

Supplementary Methods (PDF 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, A., Blurton-Jones, M., Rhee, S. et al. A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2, 599–605 (2005). https://doi.org/10.1038/nmeth777

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth777

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing