Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration

Abstract

A new system for lineage ablation is based on transgenic expression of a diphtheria toxin receptor (DTR) in mouse cells and application of diphtheria toxin (DT). To streamline this approach, we generated Cre-inducible DTR transgenic mice (iDTR) in which Cre-mediated excision of a STOP cassette renders cells sensitive to DT. We tested the iDTR strain by crossing to the T cell– and B cell–specific CD4-Cre and CD19-Cre strains, respectively, and observed efficient ablation of T and B cells after exposure to DT. In MOGi-Cre/iDTR double transgenic mice expressing Cre recombinase in oligodendrocytes, we observed myelin loss after intraperitoneal DT injections. Thus, DT crosses the blood-brain barrier and promotes cell ablation in the central nervous system. Notably, we show that the developing DT-specific antibody response is weak and not neutralizing, and thus does not impede the efficacy of DT. Our results validate the use of iDTR mice as a tool for cell ablation in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme of the iDTR system.
Figure 2: Generation of ES cells with Cre-inducible DT sensitivity.
Figure 3: DT-mediated ablation of T cells in CD4-Cre/iDTR mice.
Figure 4: Improvement of ablation by longer and more frequent DT application.
Figure 5: DT-mediated ablation of oligodendrocytes in MOGi-Cre/iDTR mice.
Figure 6: DT-specific humoral immunity.

Similar content being viewed by others

References

  1. Huang, S. & Moody, S.A. Does lineage determine the dopamine phenotype in the tadpole hypothalamus?: A quantitative analysis. J. Neurosci. 12, 1351–1362 (1992).

    Article  CAS  Google Scholar 

  2. Serbedzija, G.N., Chen, J.N. & Fishman, M.C. Regulation in the heart field of zebrafish. Development 125, 1095–1101 (1998).

    CAS  PubMed  Google Scholar 

  3. Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K. A B cell deficient mouse by targeted disruption of the membrane exon of the immunoglobulin μ chain gene. Nature 350, 423–426 (1991).

    Article  CAS  Google Scholar 

  4. Palmiter, R.D. et al. Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell 50, 435–443 (1987).

    Article  CAS  Google Scholar 

  5. Breitman, M.L. et al. Genetic ablation: targeted expression of a toxin gene causes microphthalmia in transgenic mice. Science 238, 1563–1565 (1987).

    Article  CAS  Google Scholar 

  6. Woodruff, M.F. & Anderson, N.A. Effect of lymphocyte depletion by thoracic duct fistula and administration of anti-lymphocytic serum on the survival of skin homografts in rats. Nature 200, 702 (1963).

    Article  CAS  Google Scholar 

  7. Franklin, R.J., Crang, A.J. & Blakemore, W.F. The role of astrocytes in the remyelination of glia-free areas of demyelination. Adv. Neurol. 59, 125–133 (1993).

    CAS  PubMed  Google Scholar 

  8. Borrelli, E., Heyman, R., Hsi, M. & Evans, R.M. Targeting of an inducible toxic phenotype in animal cells. Proc. Natl. Acad. Sci. USA 85, 7572–7576 (1988).

    Article  CAS  Google Scholar 

  9. Clark, A.J. et al. Selective cell ablation in transgenic mice expression E. coli nitroreductase. Gene Ther. 4, 101–110 (1997).

    Article  CAS  Google Scholar 

  10. Palmiter, R. Interrogation by toxin. Nat. Biotechnol. 19, 731–732 (2001).

    Article  CAS  Google Scholar 

  11. al-Shawi, R. et al. The herpes simplex virus type 1 thymidine kinase is expressed in the testes of transgenic mice under the control of a cryptic promoter. Mol. Cell. Biol. 11, 4207–4216 (1991).

    Article  CAS  Google Scholar 

  12. Naglich, J.G., Metherall, J.E., Russell, D.W. & Eidels, L. Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell 69, 1051–1061 (1992).

    Article  CAS  Google Scholar 

  13. Middlebrook, J.L. & Dorland, R.B. Response of cultured mammalian cells to the exotoxins of Pseudomonas aeruginosa and Corynebacterium diphtheriae: differential cytotoxicity. Can. J. Microbiol. 23, 183–189 (1977).

    Article  CAS  Google Scholar 

  14. Pappenheimer, A.M., Jr., Harper, A.A., Moynihan, M. & Brockes, J.P. Diphtheria toxin and related proteins: effect of route of injection on toxicity and the determination of cytotoxicity for various cultured cells. J. Infect. Dis. 145, 94–102 (1982).

    Article  CAS  Google Scholar 

  15. Saito, M. et al. Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat. Biotechnol. 19, 746–750 (2001).

    Article  CAS  Google Scholar 

  16. Jung, S. et al. In vivo depletion of CD11c(+) dendritic cells abrogates priming of CD8(+) T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002).

    Article  CAS  Google Scholar 

  17. Cha, J.H., Chang, M.Y., Richardson, J.A. & Eidels, L. Transgenic mice expressing the diphtheria toxin receptor are sensitive to the toxin. Mol. Microbiol. 49, 235–240 (2003).

    Article  CAS  Google Scholar 

  18. Drazin, R., Kandel, J. & Collier, R.J. Structure and activity of diphtheria toxin. II. Attack by trypsin at a specific site within the intact toxin molecule. J. Biol. Chem. 246, 1504–1510 (1971).

    CAS  PubMed  Google Scholar 

  19. Gill, D.M. & Dinius, L.L. Observations on the structure of diphtheria toxin. J. Biol. Chem. 246, 1485–1491 (1971).

    CAS  PubMed  Google Scholar 

  20. Honjo, T., Nishizuka, Y., Kato, I. & Hayaishi, O. Adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis by diphtheria toxin. J. Biol. Chem. 246, 4251–4260 (1971).

    CAS  PubMed  Google Scholar 

  21. Yamaizumi, M., Mekada, E., Uchida, T. & Okada, Y. One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 15, 245–250 (1978).

    Article  CAS  Google Scholar 

  22. Kühn, R. & Schwenk, F. Advances in gene targeting methods. Curr. Opin. Immunol. 9, 183–188 (1997).

    Article  Google Scholar 

  23. Gu, H., Marth, J.D., Orban, P.C., Mossmann, H. & Rajewsky, K. Deletion of a DNA polymerase β gene segment in T cells using cell type–specific gene targeting. Science 265, 103–106 (1994).

    Article  CAS  Google Scholar 

  24. Lakso, M. et al. Targeted oncogene activation by site-specific recombination in transgenic mice. Proc. Natl. Acad. Sci. USA 89, 6232–6236 (1992).

    Article  CAS  Google Scholar 

  25. Zambrowicz, B.P. et al. Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc. Natl. Acad. Sci. USA 94, 3789–3794 (1997).

    Article  CAS  Google Scholar 

  26. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  Google Scholar 

  27. Mao, X., Fujiwara, Y. & Orkin, S.H. Improved reporter strain for monitoring Cre recombinase-mediated DNA excisions in mice. Proc. Natl. Acad. Sci. USA 96, 5037–5042 (1999).

    Article  CAS  Google Scholar 

  28. Capecchi, M.R. Altering the genome by homologous recombination. Science 244, 1288–1292 (1989).

    Article  CAS  Google Scholar 

  29. Kontgen, F., Suss, G., Stewart, C., Steinmetz, M. & Bluethmann, H. Targeted disruption of the MHC class II Aa gene in C57BL/6 mice. Int. Immunol. 5, 957–964 (1993).

    Article  CAS  Google Scholar 

  30. Peitz, M., Pfannkuche, K., Rajewsky, K. & Edenhofer, F. Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proc. Natl. Acad. Sci. USA 99, 4489–4494 (2002).

    Article  CAS  Google Scholar 

  31. Lee, P.P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15, 763–774 (2001).

    Article  CAS  Google Scholar 

  32. Sawada, S., Scarborough, J.D., Killeen, N. & Littman, D.R. A lineage-specific transcriptional silencer regulates CD4 gene expression during T lymphocyte development. Cell 77, 917–929 (1994).

    Article  CAS  Google Scholar 

  33. Koopman, G. et al. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84, 1415–1420 (1994).

    CAS  PubMed  Google Scholar 

  34. Rickert, R.C., Roes, J. & Rajewsky, K. B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res. 25, 1317–1318 (1997).

    Article  CAS  Google Scholar 

  35. Pasparakis, M., Schmidt-Supprian, M. & Rajewsky, K. IκB kinase signaling is essential for maintenance of mature B cells. J. Exp. Med. 196, 743–752 (2002).

    Article  CAS  Google Scholar 

  36. Ballabh, P., Braun, A. & Nedergaard, M. The blood-brain barrier: an overview: Structure, regulation, and clinical implications. Neurobiol. Dis. 16, 1–13 (2004).

    Article  CAS  Google Scholar 

  37. Wrobel, C.J., Wright, D.C., Dedrick, R.L. & Youle, R.J. Diphtheria toxin effects on brain-tumor xenografts. Implications for protein-based brain-tumor chemotherapy. J. Neurosurg. 72, 946–950 (1990).

    Article  CAS  Google Scholar 

  38. Pham-Dinh, D. et al. Myelin/oligodendrocyte glycoprotein is a member of a subset of the immunoglobulin superfamily encoded within the major histocompatibility complex. Proc. Natl. Acad. Sci. USA 90, 7990–7994 (1993).

    Article  CAS  Google Scholar 

  39. Reynolds, R. & Wilkin, G.P. Development of macroglial cells in rat cerebellum. II. An in situ immunohistochemical study of oligodendroglial lineage from precursor to mature myelinating cell. Development 102, 409–425 (1988).

    CAS  PubMed  Google Scholar 

  40. Coetzee, T., Suzuki, K., Nave, K.A. & Popko, B. Myelination in the absence of galactolipids and proteolipid proteins. Mol. Cell. Neurosci. 14, 41–51 (1999).

    Article  CAS  Google Scholar 

  41. Mathis, C., Collin, L. & Borrelli, E. Oligodendrocyte ablation impairs cerebellum development. Development 130, 4709–4718 (2003).

    Article  CAS  Google Scholar 

  42. Schwenk, F., Baron, U. & Rajewsky, K. A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res. 23, 5080–5081 (1995).

    Article  CAS  Google Scholar 

  43. Cobbold, S.P., Martin, G., Qin, S. & Waldmann, H. Monoclonal antibodies to promote marrow engraftment and tissue graft tolerance. Nature 323, 164–166 (1986).

    Article  CAS  Google Scholar 

  44. Bushell, A., Morris, P.J. & Wood, K.J. Transplantation tolerance induced by antigen pretreatment and depleting anti-CD4 antibody depends on CD4+ T cell regulation during the induction phase of the response. Eur. J. Immunol. 25, 2643–2649 (1995).

    Article  CAS  Google Scholar 

  45. Greenwood, J., Clark, M. & Waldmann, H. Structural motifs involved in human IgG antibody effector functions. Eur. J. Immunol. 23, 1098–1104 (1993).

    Article  CAS  Google Scholar 

  46. Rep, M.H. et al. Treatment with depleting CD4 monoclonal antibody results in a preferential loss of circulating naive T cells but does not affect IFN-γ–secreting TH1 cells in humans. J. Clin. Invest. 99, 2225–2231 (1997).

    Article  CAS  Google Scholar 

  47. Vooijs, M., Jonkers, J. & Berns, A. A highly efficient ligand-regulated Cre recombinase mouse line shows that loxP recombination is position dependent. EMBO Rep. 2, 292–297 (2001).

    Article  CAS  Google Scholar 

  48. Torres, R.M. & Kühn, R. Laboratory protocols for conditional gene targeting. (Oxford University Press, Oxford, 1997).

  49. Förster, I. & Rajewsky, K. Expansion and functional activity of Ly-1+ B cells upon transfer of peritoneal cells into allotype-congenic newborn mice. Eur. J. Immunol. 17, 521–528 (1987).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Becker and C. Uthoff-Hachenberg for technical assistance. We also thank J. van de Water, I. Parvanova and A. Croxford for critically reading the manuscript. This work was funded by Deutsche Forschungsgemeinschaft grants WA 1601/1-1 to A.W. and BU 1410/1-1 to T.B. T.B. was a fellow of the International Graduate School of Functional Genomics and Genetics at the Institute for Genetics, Cologne. F.L.H. was supported by the Stammbach foundation. S.J. is a Scholar of the Benoziyo Center for Molecular Medicine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thorsten Buch or Ari Waisman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Disruption of myelin in the corpus callosum of DT-treated MOGi-cre/iDTR mice. (PDF 2884 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buch, T., Heppner, F., Tertilt, C. et al. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat Methods 2, 419–426 (2005). https://doi.org/10.1038/nmeth762

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth762

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing