Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantitative analysis of gene expression in living adult neural stem cells by gene trapping

Abstract

The potential of neural stem cells (NSCs) for the treatment of neurodegenerative diseases makes the identification and characterization of genes involved in neural stem cell responses therapeutically important. Although technologies exist for measuring gene expression in cells, they often provide only a representative expression profile specific to a stimulus and time. We developed a complementary technology based on a retroviral-vector gene-trap approach that uses β-lactamase–induced disruption of fluorescence resonance energy transfer in the fluorophore CCF-2/AM. A library of 'tagged' adult rat NSCs was generated by transduction with gene-trap virus produced from a single-integrant packaging cell line that allowed us to quantitatively analyze dynamic gene expression changes in real time in living NSCs. Using this library we identified previously unknown genes regulated by oxidative stress, indomethacin and factors that induce differentiation, and show that one of the trapped genes, Sox6, is sufficient to induce astrocytic differentiation when overexpressed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A strategy to generate single-tagged neural stem cells for real-time gene expression analysis.
Figure 2: Paraquat induces gene expression that can be modulated by indomethacin.
Figure 3: Microscopic and PCR confirmation.
Figure 4: The R07 clone was used to follow the expression of Sox6 during lineage-nonspecific differentiation.
Figure 5: Overexpression of Sox6 results in astrocyte differentiation.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Ray, J., Peterson, D.A., Schinstine, M. & Gage, F.H. Proliferation differentiation, and long-term culture of primary hippocampal neurons. Proc. Natl. Acad. Sci. USA 90, 3602–3606 (1993).

    Article  CAS  Google Scholar 

  2. Gage, F.H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    Article  CAS  Google Scholar 

  3. Markakis, E.A. & Gage, F.H. Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J. Comp. Neurol. 406, 449–460 (1999).

    Article  CAS  Google Scholar 

  4. Kokaia, Z. & Lindvall, O. Neurogenesis after ischaemic brain insults. Curr. Opin. Neurobiol. 13, 127–132 (2003).

    Article  CAS  Google Scholar 

  5. Jin, K. et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc. Natl. Acad. Sci. USA 98, 4710–4715 (2001).

    Article  CAS  Google Scholar 

  6. Parent, J.M., Vexler, Z.S., Gong, C., Derugin, N. & Ferriero, D.M. Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann. Neurol. 52, 802–813 (2002).

    Article  Google Scholar 

  7. Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z. & Lindvall, O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8, 963–970 (2002).

    Article  CAS  Google Scholar 

  8. Takahashi, K. & Tanaka-Kunishima, M. Monitoring early neuronal differentiation by ion channels in ascidian embryos. J. Neurobiol. 37, 3–22 (1998).

    Article  CAS  Google Scholar 

  9. Suhonen, J.O., Peterson, D.A., Ray, J. & Gage, F.H. Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature 383, 624–627 (1996).

    Article  CAS  Google Scholar 

  10. Modo, M. et al. Transplantation of neural stem cells in a rat model of stroke: assessment of short-term graft survival and acute host immunological response. Brain Res. 958, 70–82 (2002).

    Article  CAS  Google Scholar 

  11. Modo, M. et al. Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging. Neuroimage 17, 803–811 (2002).

    Article  Google Scholar 

  12. Geschwind, D.H. et al. A genetic analysis of neural progenitor differentiation. Neuron 29, 325–339 (2001).

    Article  CAS  Google Scholar 

  13. Karsten, S.L. et al. Global analysis of gene expression in neural progenitors reveals specific cell-cycle, signaling, and metabolic networks. Dev. Biol. 261, 165–182 (2003).

    Article  CAS  Google Scholar 

  14. Zlokarnik, G. et al. Quantitation of transcription and clonal selection of single living cells with β-lactamase as reporter. Science 279, 84–88 (1998).

    Article  CAS  Google Scholar 

  15. Zlokarnik, G. Fusions to β-lactamase as a reporter for gene expression in live mammalian cells. Methods Enzymol. 326, 221–244 (2000).

    Article  CAS  Google Scholar 

  16. Somia, N.V., Zoppe, M. & Verma, I.M. Generation of targeted retroviral vectors by using single-chain variable fragment: an approach to in vivo gene delivery. Proc. Natl. Acad. Sci. USA 92, 7570–7574 (1995).

    Article  CAS  Google Scholar 

  17. Whitney, M. et al. A genome-wide functional assay of signal transduction in living mammalian cells. Nat. Biotechnol. 16, 1329–1333 (1998).

    Article  CAS  Google Scholar 

  18. Gage, F.H., Ray, J. & Fisher, L.J. Isolation, characterization, and use of stem cells from the CNS. Annu. Rev. Neurosci. 18, 159–192 (1995).

    Article  CAS  Google Scholar 

  19. Frohman, M.A., Dush, M.K. & Martin, G.R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA 85, 8998–9002 (1988).

    Article  CAS  Google Scholar 

  20. Zambrowicz, B.P. et al. Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature 392, 608–611 (1998).

    Article  CAS  Google Scholar 

  21. Hansen, J. et al. A large-scale, gene-driven mutagenesis approach for the functional analysis of the mouse genome. Proc. Natl. Acad. Sci. USA 100, 9918–9922 (2003).

    Article  CAS  Google Scholar 

  22. Barlow, C. et al. Loss of the ataxia-telangiectasia gene product causes oxidative damage in target organs. Proc. Natl. Acad. Sci. USA 96, 9915–9919 (1999).

    Article  CAS  Google Scholar 

  23. Pong, K. Oxidative stress in neurodegenerative diseases: therapeutic implications for superoxide dismutase mimetics. Expert Opin. Biol. Ther. 3, 127–139 (2003).

    Article  CAS  Google Scholar 

  24. Day, B.J., Patel, M., Calavetta, L., Chang, L.Y. & Stamler, J.S. A mechanism of paraquat toxicity involving nitric oxide synthase. Proc. Natl. Acad. Sci. USA 96, 12760–12765 (1999).

    Article  CAS  Google Scholar 

  25. Monje, M.L., Toda, H. & Palmer, T.D. Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760–1765 (2003).

    Article  CAS  Google Scholar 

  26. Monje, M.L. & Palmer, T. Radiation injury and neurogenesis. Curr. Opin. Neurol. 16, 129–134 (2003).

    Article  Google Scholar 

  27. Narahara, M. et al. Immunocytochemical localization of beta-citryl-L-glutamate in primary neuronal cells and in the differentiation of P19 mouse embryonal carcinoma cells into neuronal cells. Biol. Pharm. Bull. 23, 1287–1292 (2000).

    Article  CAS  Google Scholar 

  28. Hamada-Kanazawa, M. et al. Sox6 overexpression causes cellular aggregation and the neuronal differentiation of P19 embryonic carcinoma cells in the absence of retinoic acid. FEBS Lett. 560, 192–198 (2004).

    Article  CAS  Google Scholar 

  29. Townley, D.J., Avery, B.J., Rosen, B. & Skarnes, W.C. Rapid sequence analysis of gene trap integrations to generate a resource of insertional mutations in mice. Genome Res. 7, 293–298 (1997).

    Article  CAS  Google Scholar 

  30. Zhang, B., Schmoyer, D., Kirov, S. & Snoddy, J. GOTree Machine (GOTM): a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies. BMC Bioinformatics 5, 16 (2004).

    Article  Google Scholar 

  31. Keppler, D., Leier, I., Jedlitschky, G. & Konig, J. ATP-dependent transport of glutathione S-conjugates by the multidrug resistance protein MRP1 and its apical isoform MRP2. Chem. Biol. Interact. 111–112, 153–161 (1998).

    Article  Google Scholar 

  32. Maack, C. et al. Oxygen free radical release in human failing myocardium is associated with increased activity of rac1-GTPase and represents a target for statin treatment. Circulation 108, 1567–1574 (2003).

    Article  CAS  Google Scholar 

  33. Miller, A.C. & Samid, D. Tumor resistance to oxidative stress: association with ras oncogene expression and reversal by lovastatin, an inhibitor of p21ras isoprenylation. Int. J. Cancer 60, 249–254 (1995).

    Article  CAS  Google Scholar 

  34. Geyer, J., Doring, B., Failing, K. & Petzinger, E. Molecular cloning and functional characterization of the bovine (Bos taurus) organic anion transporting polypeptide Oatp1a2 (Slco1a2). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 137, 317–329 (2004).

    Article  Google Scholar 

  35. Smits, P. et al. The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev. Cell 1, 277–290 (2001).

    Article  CAS  Google Scholar 

  36. Smits, P. & Lefebvre, V. Sox5 and Sox6 are required for notochord extracellular matrix sheath formation, notochord cell survival and development of the nucleus pulposus of intervertebral discs. Development 130, 1135–1148 (2003).

    Article  CAS  Google Scholar 

  37. Murakami, A., Ishida, S., Thurlow, J., Revest, J.M. & Dickson, C. SOX6 binds CtBP2 to repress transcription from the Fgf-3 promoter. Nucleic Acids Res. 29, 3347–3355 (2001).

    Article  CAS  Google Scholar 

  38. Nakashima, K. & Taga, T. Mechanisms underlying cytokine-mediated cell-fate regulation in the nervous system. Mol. Neurobiol. 25, 233–244 (2002).

    Article  CAS  Google Scholar 

  39. Palmer, T.D., Markakis, E.A., Willhoite, A.R., Safar, F. & Gage, F.H. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J. Neurosci. 19, 8487–8497 (1999).

    Article  CAS  Google Scholar 

  40. Hsieh, J. et al. IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes. J. Cell Biol. 164, 111–122 (2004).

    Article  CAS  Google Scholar 

  41. Somia, N.V., Kafri, T. & Verma, I.M. Piecing together more efficient gene expression. Nat. Biotechnol. 17, 224–225 (1999).

    Article  CAS  Google Scholar 

  42. Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159–171 (1996).

    Article  CAS  Google Scholar 

  43. Sandberg, R. et al. Regional and strain-specific gene expression mapping in the adult mouse brain. Proc. Natl. Acad. Sci. USA 97, 11038–11043 (2000).

    Article  CAS  Google Scholar 

  44. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Tsien for his helpful discussions and support; B. Miller for her guidance in NSC culture; and L. Moore, A. Willhoite, the members of the flow cytometry core facility and members of the Barlow lab for their advice. We also thank M.L. Gage and G.P. Scheel for their editorial comments; J. Simon for figure preparation; Aurora Biosciences (Panvera) for providing the CCF-2/AM and the p237 vector; R. Barnard and J. Rainey of the Young lab (The Salk Institute) for assistance with the plate reader; and T. Palmer for his suggestions during the preparation of this manuscript. This work was supported by NS039601-04, the Lookout Fund, the Frederick B. Rentschler Developmental Chair (C.B.), NIH fellowship F31 NS10860-01 (J.R.S.) and the Vi and John Alder Chair (F.H.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carrolee Barlow.

Ethics declarations

Competing interests

C.B. is now an employee of BrainCells, Inc. No work for this manuscript was supported by funds from BrainCells, Inc.

Supplementary information

Supplementary Table 1

Optimizing FACS for the isolation and survival of single neural stem cells (PDF 43 kb)

Supplementary Table 2

Tagged clonal populations and identity of trapped genes (PDF 95 kb)

Supplementary Methods (PDF 151 kb)

Supplementary Protocol (PDF 157 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheel, J., Ray, J., Gage, F. et al. Quantitative analysis of gene expression in living adult neural stem cells by gene trapping. Nat Methods 2, 363–370 (2005). https://doi.org/10.1038/nmeth755

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth755

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing