Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cell-free protein production and labeling protocol for NMR-based structural proteomics

Abstract

Structural proteomics requires robust, scalable methods. Here we describe a wheat germ cell-free platform for protein production that supports efficient NMR structural studies of eukaryotic proteins and offers advantages over cell-based methods. To illustrate this platform, we describe its application to a specific target (At3g01050.1) from Arabidopsis thaliana. After cloning the target gene into a specialized plasmid, we carry out a small-scale (50 μl) in vitro sequential transcription and translation trial to ascertain the level of protein production and solubility. Next, we prepare mRNA for use in a 4-ml semicontinuous cell-free translation reaction to incorporate 15N-labeled amino acids into a protein sample that we purify and test for suitability for NMR structural analysis. We then repeat the cell-free approach with 13C,15N-labeled amino acids to prepare a doubly labeled sample. The three-dimensional (3D) structure of At3g01050.1 shows that this protein is an unusual member of the β-grasp protein family.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Cell-free expression and purification of [U-13C,15N]Ntag-At3g01050.1.
Figure 3: NMR structure of At3g01050.1.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Kramer, G., Kudlicki, W. & Hardesty, B. Cell-free coupled transcription-translation systems from Escherichia coli. in Protein Expression. A Practical Approach (eds. Higgens, S.J. & Hames, B.D.) 201–223 (Oxford Univ. Press, Oxford, UK, 1999).

    Google Scholar 

  2. Clemens, M.M. & Prujin, G.J. Protein synthesis in eukaryotic cell-free systems. in Protein Expression. A Practical Approach (eds. Higgens, S.J. & Hames, B.D.) 129–165 (Oxford Univ. Press, Oxford, UK, 1999).

    Google Scholar 

  3. Cubeddu, L. et al. Dictyostelium discoideum as expression host: isotopic labeling of a recombinant glycoprotein for NMR studies. Protein Expr. Purif. 19, 335–342 (2000).

    Article  CAS  Google Scholar 

  4. Strauss, A. et al. Amino-acid-type selective isotope labeling of proteins expressed in Baculovirus-infected insect cells useful for NMR studies. J. Biomol. NMR 26, 367–372 (2003).

    Article  CAS  Google Scholar 

  5. Bruggert, M., Rehm, T., Shanker, S., Georgescu, J. & Holak, T.A. A novel medium for expression of proteins selectively labeled with 15N-amino acids in Spodoptera frugiperda (Sf9) insect cells. J. Biomol. NMR 25, 335–348 (2003).

    Article  Google Scholar 

  6. Goff, S.A. & Goldberg, A.L. An increased content of protease LA, the Lon gene product, increases protein degradation and blocks growth in Escherichia coli. J. Biol. Chem. 262, 4508–4515 (1987).

    CAS  PubMed  Google Scholar 

  7. Maurizi, M.R. Degradation in vitro of bacteriophage λ N protein by Lon protease from Escherichia coli. J. Biol. Chem. 262, 2696–2703 (1987).

    CAS  PubMed  Google Scholar 

  8. Chrunyk, B.A., Evans, J., Lillquist, J., Young, P. & Wetzel, R. Inclusion-body formation and protein stability in sequence variants of interleukin-1β. J. Biol. Chem. 268, 18053–18061 (1993).

    CAS  PubMed  Google Scholar 

  9. Shi, J., Pelton, J.G., Cho, H.S. & Wemmer, D.E. Protein signal assignments using specific labeling and cell-free synthesis. J. Biomol. NMR 28, 235–247 (2004).

    Article  CAS  Google Scholar 

  10. Torizawa, T., Terauchi, T. & Kainosho, M. [Recent developments in NMR methods for structural biology]. Seikagaku 74, 1279–1284 (2002).

    CAS  PubMed  Google Scholar 

  11. Kigawa, T., Muto, Y. & Yokoyama, S. Cell-free synthesis and amino acid-selective stable isotope labeling of proteins for NMR analysis. J. Biomol. NMR 6, 129–134 (1995).

    Article  CAS  Google Scholar 

  12. Yabuki, T. et al. Dual amino acid-selective and site-directed stable-isotope labeling of the human c-Ha-Ras protein by cell-free synthesis. J. Biomol. NMR 11, 295–306 (1998).

    Article  CAS  Google Scholar 

  13. Klammt, C. et al. High level cell-free expression and specific labeling of integral membrane proteins. Eur. J. Biochem. 271, 568–580 (2004).

    Article  CAS  Google Scholar 

  14. Henrich, B., Lubitz, W. & Plapp, R. Lysis of Escherichia coli by induction of cloned φX174 genes. Mol. Gen. Genet. 185, 493–497 (1982).

    Article  CAS  Google Scholar 

  15. Guignard, L., Ozawa, K., Pursglove, S.E., Otting, G. & Dixon, N.E. NMR analysis of in vitro–synthesized proteins without purification: a high-throughput approach. FEBS Lett. 524, 159–162 (2002).

    Article  CAS  Google Scholar 

  16. Kigawa, T. & Yokoyama, S. [High-throughput cell-free protein expression system for structural genomics and proteomics studies]. Tanpakushitsu Kakusan Koso 47, 1014–1019 (2002).

    CAS  PubMed  Google Scholar 

  17. Kigawa, T. et al. Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett. 442, 15–19 (1999).

    Article  CAS  Google Scholar 

  18. Kim, D.M., Kigawa, T., Choi, C.Y. & Yokoyama, S. A highly efficient cell-free protein synthesis system from Escherichia coli. Eur. J. Biochem. 239, 881–886 (1996).

    Article  CAS  Google Scholar 

  19. Yokoyama, S. Protein expression systems for structural genomics and proteomics. Curr. Opin. Chem. Biol. 7, 39–43 (2003).

    Article  CAS  Google Scholar 

  20. Yokoyama, S. et al. Structural genomics projects in Japan. Nat. Struct. Biol. 7, 943–945 (2000).

    Article  CAS  Google Scholar 

  21. Kim, D.M. & Swartz, J.R. Prolonging cell-free protein synthesis by selective reagent additions. Biotechnol. Prog. 16, 385–390 (2000).

    Article  CAS  Google Scholar 

  22. Yin, G. & Swartz, J.R. Enhancing multiple disulfide bonded protein folding in a cell-free system. Biotechnol. Bioeng. 86, 188–195 (2004).

    Article  CAS  Google Scholar 

  23. Chumpolkulwong, N. et al. Effects of Escherichia coli ribosomal protein S12 mutations on cell-free protein synthesis. Eur. J. Biochem. 271, 1127–1134 (2004).

    Article  CAS  Google Scholar 

  24. Kawasaki, T., Gouda, M.D., Sawasaki, T., Takai, K. & Endo, Y. Efficient synthesis of a disulfide-containing protein through a batch cell-free system from wheat germ. Eur. J. Biochem. 270, 4780–4786 (2003).

    Article  CAS  Google Scholar 

  25. Madin, K., Sawasaki, T., Ogasawara, T. & Endo, Y. A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes. Proc. Natl. Acad. Sci. USA 97, 559–564 (2000).

    Article  CAS  Google Scholar 

  26. Morita, E.H., Sawasaki, T., Tanaka, R., Endo, Y. & Kohno, T. A wheat germ cell-free system is a novel way to screen protein folding and function. Protein Sci. 12, 1216–1221 (2003).

    Article  CAS  Google Scholar 

  27. Sawasaki, T. et al. A bilayer cell-free protein synthesis system for high-throughput screening of gene products. FEBS Lett. 514, 102–105 (2002).

    Article  CAS  Google Scholar 

  28. Sawasaki, T., Ogasawara, T., Morishita, R. & Endo, Y. A cell-free protein synthesis system for high-throughput proteomics. Proc. Natl. Acad. Sci. USA 99, 14652–14657 (2002).

    Article  CAS  Google Scholar 

  29. Betton, J.M. Rapid translation system (RTS): a promising alternative for recombinant protein production. Curr. Protein Pept. Sci. 4, 73–80 (2003).

    Article  CAS  Google Scholar 

  30. Altieri, A.S., Hinton, D.P. & Byrd, R.A. Association of biomolecular systems via pulsed field gradient NMR self-diffusion measurements. J. Am. Chem. Soc. 117, 7566–7567 (1995).

    Article  CAS  Google Scholar 

  31. Bartels, C., Billeter, M., Güntert, P. & Wüthrich, K. Automated sequence-specific NMR assignment of homologous proteins using the program GARANT. J. Biomol. NMR 7, 207–213 (1996).

    Article  CAS  Google Scholar 

  32. Herrmann, T., Guntert, P. & Wuthrich, K. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209–227 (2002).

    Article  CAS  Google Scholar 

  33. Linge, J.P., Williams, M.A., Spronk, C.A., Bonvin, A.M. & Nilges, M. Refinement of protein structures in explicit solvent. Proteins 50, 496–506 (2003).

    Article  CAS  Google Scholar 

  34. Palmer III, A.G. NMR probes of molecular dynamics: overview and comparison with other techniques. Annu. Rev. Biophys. Biomol. Struct. 30, 129–155 (2001).

    Article  CAS  Google Scholar 

  35. Terauchi, T., Ohki, S.Y. & Kainosho, M. [Developing a new approach for high-throughput, high-accuracy NMR structural analyses of genomic proteins]. Tanpakushitsu Kakusan Koso 47, 1045–1051 (2002).

    CAS  PubMed  Google Scholar 

  36. Larsen, C.N. & Wang, H. The ubiquitin superfamily: members, features, and phylogenies. J. Proteome Res. 1, 411–419 (2002).

    Article  CAS  Google Scholar 

  37. Grynberg, M., Jaroszewski, L. & Godzik, A. Domain analysis of the tubulin cofactor system: a model for tubulin folding and dimerization. BMC Bioinformatics 4, 46 (2003).

    Article  Google Scholar 

  38. Delaglio, F. et al. NMRPIPE—a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  39. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).

    Article  CAS  Google Scholar 

  40. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  41. Hooft, R.W.W., Vriend, G., Sander, C. & Abola, E.E. Errors in protein structures. Nature 381, 272 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Endo and CellFree Sciences Co., Ltd., for advice and encouragement in using the wheat germ cell-free system that they have developed; and M. Kainosho for sharing the unpublished information cited here. This research was supported by a grant from the National Institutes of Health Protein Structure Initiative (1 P50 GM64598 to J.L.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L Markley.

Ethics declarations

Competing interests

As stated in the article, the Center for Eukaryotic Structural Genomics and the University of Wisconsin–Madison have a collaborative agreement with Ehime University and Cell-Free Sciences, Co. Ltd., a company located in Yokohama, Japan. Under the terms of this agreement, the parties involved are codeveloping and improving the wheat germ cell-free technology. Discussions are ongoing concerning the establishment of a US company to further develop and commercialize this technology; this company might involve certain authors of this paper (D.A.V. and J.L.M.).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinarov, D., Lytle, B., Peterson, F. et al. Cell-free protein production and labeling protocol for NMR-based structural proteomics. Nat Methods 1, 149–153 (2004). https://doi.org/10.1038/nmeth716

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth716

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing