Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LigAmp for sensitive detection of single-nucleotide differences

Abstract

We developed the LigAmp assay for sensitive detection and accurate quantification of viruses and cells with single-base mutations. In LigAmp, two oligonucleotides are hybridized adjacently to a DNA template. One oligonucleotide matches the target sequence and contains a probe sequence. If the target sequence is present, the oligonucleotides are ligated together and detected using real-time PCR. LigAmp detected KRAS2 mutant DNA at 0.01% in mixtures of different cell lines. KRAS2 mutations were also detected in pancreatic duct juice from patients with pancreatic cancer. LigAmp detected the K103N HIV-1 drug resistance mutation at 0.01% in plasmid mixtures and at 0.1% in DNA amplified from plasma HIV-1. Detection in both systems is linear over a broad dynamic range. Preliminary evidence indicates that reactions can be multiplexed. This assay may find applications in the diagnosis of genetic disorders and the management of patients with cancer and infectious diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the LigAmp assay.
Figure 2: Detection of genomic DNA containing the KRAS2 mutation.
Figure 3: Detection of mutant KRAS2 sequences in pancreatic duct juice from pancreatic cancer patients.
Figure 4: Detection of the HIV-1 K103N mutation in plasmid mixtures.
Figure 5: Population sequencing and LigAmp analysis of HIV-1 in plasma samples.

Similar content being viewed by others

References

  1. Vary, C.P. et al. Allele-specific hybridization of lipoprotein lipase and factor-V Leiden missense mutations with direct label alkaline phosphatase-conjugated oligonucleotide probes. Genet. Anal. 13, 59–65 (1996).

    Article  CAS  Google Scholar 

  2. Chen, J. & Viola, M.V. A method to detect ras point mutations in small subpopulations of cells. Anal. Biochem. 195, 51–56 (1991).

    Article  CAS  Google Scholar 

  3. Redston, M.S., Papadopoulos, N., Caldas, C., Kinzler, K.W. & Kern, S.E. Common occurrence of APC and K-ras gene mutations in the spectrum of colitis-associated neoplasias. Gastroenterology 108, 383–392 (1995).

    Article  CAS  Google Scholar 

  4. Rothschild, C.B., Brewer, C.S., Loggie, B., Beard, G.A. & Triscott, M.X. Detection of colorectal cancer K-ras mutations using a simplified oligonucleotide ligation assay. J. Immunol. Methods 206, 11–19 (1997).

    Article  CAS  Google Scholar 

  5. Clayton, S.J. et al. K-ras point mutation detection in lung cancer: comparison of two approaches to somatic mutation detection using ARMS allele-specific amplification. Clin. Chem. 46, 1929–1938 (2000).

    CAS  PubMed  Google Scholar 

  6. Takeda, S., Ichii, S. & Nakamura, Y. Detection of K-ras mutation in sputum by mutant-allele-specific amplification (MASA). Hum. Mutat. 2, 112–117 (1993).

    Article  CAS  Google Scholar 

  7. Germer, S., Holland, M.J. & Higuchi, R. High-throughput SNP allele-frequency determination in pooled DNA samples by kinetic PCR. Genome Res. 10, 258–266 (2000).

    Article  CAS  Google Scholar 

  8. Kwok, S. et al. Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Res. 18, 999–1005 (1990).

    Article  CAS  Google Scholar 

  9. McKinzie, P.B. & Parsons, B.L. Detection of rare K-ras codon 12 mutations using allele-specific competitive blocker PCR. Mutat. Res. 517, 209–220 (2002).

    Article  CAS  Google Scholar 

  10. Lichtenstein, A.V., Serdjuk, O.I., Sukhova, T.I., Melkonyan, H.S. & Umansky, S.R. Selective 'stencil'-aided pre-PCR cleavage of wild-type sequences as a novel approach to detection of mutant K-RAS. Nucleic Acids Res. 29, E90-0 (2001).

    Article  Google Scholar 

  11. Schimanski, C.C., Linnemann, U. & Berger, M.R. Sensitive detection of K-ras mutations augments diagnosis of colorectal cancer metastases in the liver. Cancer Res. 59, 5169–5175 (1999).

    CAS  PubMed  Google Scholar 

  12. Kaur, M. et al. Ligation of a primer at a mutation: a method to detect low-level mutations in DNA. Mutagenesis 17, 365–374 (2002).

    Article  CAS  Google Scholar 

  13. Oliver, D.H., Thompson, R.E., Griffin, C.A. & Eshleman, J.R. Use of single-nucleotide polymorphisms (SNP) and real-time polymerase chain reaction for bone marrow engraftment analysis. J. Mol. Diagn. 2, 202–208 (2000).

    Article  CAS  Google Scholar 

  14. Srivastava, S. & Rossi, S.C. Early detection research program at the NCI. Int. J. Cancer 69, 35–37 (1996).

    Article  CAS  Google Scholar 

  15. Sidransky, D. et al. Identification of ras oncogene mutations in the stool of patients with curable colorectal tumors. Science 256, 102–105 (1992).

    Article  CAS  Google Scholar 

  16. Traverso, G. et al. Detection of APC mutations in fecal DNA from patients with colorectal tumors. N. Engl. J. Med. 346, 311–320 (2002).

    Article  CAS  Google Scholar 

  17. Wilentz, R.E. et al. K-ras mutations in the duodenal fluid of patients with pancreatic carcinoma. Cancer 82, 96–103 (1998).

    Article  CAS  Google Scholar 

  18. Mulcahy, H. & Farthing, M.J. Diagnosis of pancreatico-biliary malignancy: detection of gene mutations in plasma and stool. Ann. Oncol. 10, 114–117 (1999).

    Article  Google Scholar 

  19. Hruban, R.H., Wilentz, R.E. & Kern, S.E. Genetic progression in the pancreatic ducts. Am. J. Pathol. 156, 1821–1825 (2000).

    Article  CAS  Google Scholar 

  20. Caldas, C. et al. Detection of K-ras mutations in the stool of patients with pancreatic adenocarcinoma and pancreatic ductal hyperplasia. Cancer Res. 54, 3568–3573 (1994).

    CAS  PubMed  Google Scholar 

  21. Watanabe, H. et al. Quantitative determination of K-ras mutations in pancreatic juice for diagnosis of pancreatic cancer using hybridization protection assay. Pancreas 17, 341–347 (1998).

    Article  CAS  Google Scholar 

  22. Tada, M. et al. Quantitative analysis of ras gene mutation in pancreatic juice for diagnosis of pancreatic adenocarcinoma. Dig. Dis. Sci. 43, 15–20 (1998).

    Article  CAS  Google Scholar 

  23. Laghi, L. et al. Common occurrence of multiple K-RAS mutations in pancreatic cancers with associated precursor lesions and in biliary cancers. Oncogene 21, 4301–4306 (2002).

    Article  CAS  Google Scholar 

  24. Mitchell, C.E., Belinsky, S.A. & Lechner, J.F. Detection and quantitation of mutant K-ras codon 12 restriction fragments by capillary electrophoresis. Anal. Biochem. 224, 148–153 (1995).

    Article  CAS  Google Scholar 

  25. Prieto-Alamo, M.J. & Laval, F. Deficient DNA-ligase activity in the metabolic disease tyrosinemia type I. Proc. Natl. Acad. Sci. USA 95, 12614–12618 (1998).

    Article  CAS  Google Scholar 

  26. Ciarrocchi, G., MacPhee, D.G., Deady, L.W. & Tilley, L. Specific inhibition of the eubacterial DNA ligase by arylamino compounds. Antimicrob. Agents Chemother. 43, 2766–2772 (1999).

    Article  CAS  Google Scholar 

  27. Barringer, K.J., Orgel, L., Wahl, G. & Gingeras, T.R. Blunt-end and single-strand ligations by Escherichia coli ligase: influence on an in vitro amplification scheme. Gene 89, 117–122 (1990).

    Article  CAS  Google Scholar 

  28. Schouten, J.P. et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 30, e57 (2002).

    Article  Google Scholar 

  29. Havlir, D.V., Eastman, S., Gamst, A. & Richman, D.D. Nevirapine-resistant human immunodeficiency virus: kinetics of replication and estimated prevalence in untreated patients. J. Virol. 70, 7894–7899 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hirsch, M.S. et al. Antiretroviral drug resistance testing in adults with HIV infection: implications for clinical management. International AIDS Society—USA Panel. JAMA 279, 1984–1991 (1998).

    Article  CAS  Google Scholar 

  31. Chiu, R.W. et al. Prenatal exclusion of β-thalassaemia major by examination of maternal plasma. Lancet 360, 998–1000 (2002).

    Article  Google Scholar 

  32. Yukobowich, E. et al. Risk of fetal loss in twin pregnancies undergoing second-trimester amniocentesis(1). Obstet. Gynecol. 98, 231–234 (2001).

    CAS  PubMed  Google Scholar 

  33. Jackson, L.G. et al. A randomized comparison of transcervical and transabdominal chorionic-villus sampling. The U.S. National Institute of Child Health and Human Development Chorionic-Villus Sampling and Amniocentesis Study Group. N. Engl. J. Med. 327, 594–598 (1992).

    Article  CAS  Google Scholar 

  34. Fukushima, N. et al. Diagnosing pancreatic cancer using methylation-specific PCR analysis of pancreatic juice. Cancer Biol. Ther. 2, 78–83 (2003).

    Article  Google Scholar 

  35. Eshleman, S.H., Jones, D., Flys, T., Petrauskene, O. & Jackson, J.B. Analysis of HIV-1 variants by cloning DNA generated with the ViroSeq HIV-1 Genotyping System. Biotechniques 35, 614–618, 620, 622 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Maitra, B. Wendelburg (Cepheid), J.B. Jackson, K. Kinzler, B. Vogelstein, K. Murphy, M. Slater, J. Strain (Applied Biosystems) and K. Brune for helpful discussions; J. Mellors (University of Pittsburgh) for providing plasmids containing HIV-1 molecular clones with and without the K103N mutation; and S. Hudelson for excellent technical assistance. This work was supported by grant R01 CA81439 from the National Cancer Institute, and the Maryland Cigarette Restitution Fund (to J.R.E.), by the HIV Prevention Trials Network sponsored by the National Institute for Allergies and Infectious Diseases (NIAID), National Institutes of Child Health and Human Development, National Institute on Drug Abuse, National Institute of Mental Health and Office of AIDS Research of the National Institutes of Health (NIH), Department of Health and Human Services (U01-AI-46745 and U01-AI-48054) and the Adult AIDS Clinical Trials Groups (NIH, Division of AIDS, NIAID, U01-AI-38858) and R01-HD042965-01 (to S.H.E.), by National Cancer Institute SPORE grant P50-CA-62924, and by a Fellowship from the Canadian Institute of Health Research (to C.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R Eshleman.

Ethics declarations

Competing interests

Johns Hopkins University has filed a patent application with the US Patent and Trademark Office.

Supplementary information

Supplementary Table 1

Oligonucleotides and probes (PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, C., Eshleman, S., Jones, D. et al. LigAmp for sensitive detection of single-nucleotide differences. Nat Methods 1, 141–147 (2004). https://doi.org/10.1038/nmeth713

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth713

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing