Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo

Abstract

Glial cells have been identified as key signaling components in the brain; however, methods to investigate their structure and function in vivo have been lacking. Here, we describe a new, highly selective approach for labeling astrocytes in intact rodent neocortex that allows in vivo imaging using two-photon microscopy. The red fluorescent dye sulforhodamine 101 (SR101) was specifically taken up by protoplasmic astrocytes after brief exposure to the brain surface. Specificity was confirmed by immunohistochemistry. In addition, SR101 labeled enhanced green fluorescent protein (EGFP)-expressing astrocytes but not microglial cells in transgenic mice. We used SR101 labeling to quantify morphological characteristics of astrocytes and to visualize their close association with the cortical microvasculature. Furthermore, by combining this method with calcium indicator loading of cell populations, we demonstrated distinct calcium dynamics in astroglial and neuronal networks. We expect SR101 staining to become a principal tool for investigating astroglia in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vivo staining pattern of neocortical cells after application of SR101.
Figure 2: Gap junctions permit rapid spread of SR101.
Figure 3: SR101-labeled cells are immunopositive for S-100β protein, but not for either the neuron-specific nuclear protein NeuN or, in the vast majority of cases, the enzyme CNPase in vitro.
Figure 4: In vivo colabeling in neocortex using SR101.
Figure 5: Simultaneous calcium imaging of neuronal and glial networks in vivo.

Similar content being viewed by others

References

  1. Fields, R.D. & Stevens-Graham, B. Neuroscience—New insights into neuron-glia communication. Science 298, 556–562 (2002).

    Article  CAS  Google Scholar 

  2. Haydon, P.G. Glia: listening and talking to the synapse. Nat. Rev. Neurosci. 2, 185–193 (2001).

    Article  CAS  Google Scholar 

  3. Bezzi, P. & Volterra, A. A neuron-glia signalling network in the active brain. Curr. Opin. Neurobiol. 11, 387–394 (2001).

    Article  CAS  Google Scholar 

  4. Beattie, E.C. et al. Control of synaptic strength by glial TNFα. Science 295, 2282–2285 (2002).

    Article  CAS  Google Scholar 

  5. Kang, J., Jiang, L., Goldman, S.A. & Nedergaard, M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neurosci. 1, 683–692 (1998).

    Article  CAS  Google Scholar 

  6. Pfrieger, F.W. & Barres, B.A. Synaptic efficacy enhanced by glial cells in vitro. Science 277, 1684–1687 (1997).

    Article  CAS  Google Scholar 

  7. Cornellbell, A.H., Finkbeiner, S.M., Cooper, M.S. & Smith, S.J. Glutamate induces calcium waves in cultured astrocytes—long-range glial signaling. Science 247, 470–473 (1990).

    Article  CAS  Google Scholar 

  8. Dani, J.W., Chernjavsky, A. & Smith, S.J. Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8, 429–440 (1992).

    Article  CAS  Google Scholar 

  9. Zonta, M. et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 6, 43–50 (2003).

    Article  CAS  Google Scholar 

  10. Simard, M., Arcuino, G., Takano, T., Liu, Q.S. & Nedergaard, M. Signaling at the gliovascular interface. J. Neurosci. 23, 9254–9262 (2003).

    Article  CAS  Google Scholar 

  11. Nedergaard, M., Ransom, B. & Goldman, S.A. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 26, 523–530 (2003).

    Article  CAS  Google Scholar 

  12. Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  Google Scholar 

  13. Zipfel, W.R., Williams, R.M. & Webb, W.W. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003).

    Article  CAS  Google Scholar 

  14. Helmchen, F. & Denk, W. New developments in multiphoton microscopy. Curr. Opin. Neurobiol. 12, 593–601 (2002).

    Article  CAS  Google Scholar 

  15. Ragan, T.M., Huang, H. & So, P.T.C. In vivo and ex vivo tissue applications of two-photon microscopy (eds. Marriott, G. & Parker, I.) in Biophotonics Pt. B Vol. 361, 481–505 (Academic Press, San Diego, 2003).

    Chapter  Google Scholar 

  16. Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D.W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385, 161–165 (1997).

    Article  CAS  Google Scholar 

  17. Lendvai, B., Stern, E.A., Chen, B. & Svoboda, K. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404, 876–881 (2000).

    Article  CAS  Google Scholar 

  18. Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100, 7319–7324 (2003).

    Article  CAS  Google Scholar 

  19. Helmchen, F. & Waters, J. Ca2+ imaging in the mammalian brain in vivo. Eur. J. Pharmacol. 447, 119–129 (2002).

    Article  CAS  Google Scholar 

  20. Zhuo, L. et al. Live astrocytes visualized by green fluorescent protein in transgenic mice. Dev. Biol. 187, 36–42 (1997).

    Article  CAS  Google Scholar 

  21. Nolte, C. et al. GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33, 72–86 (2001).

    Article  CAS  Google Scholar 

  22. Jung, S. et al. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000).

    Article  CAS  Google Scholar 

  23. Privat, A., Gimenez-Ribotta, M. & Ridet, J.-L. Morphology of astrocytes. in Neuroglia (eds. Ransom, B.R. & Kettenmann, H.) 3–22 (Oxford University Press, Oxford, 1995).

    Google Scholar 

  24. Ehinger, B., Zucker, C.L., Bruun, A. & Adolph, A. In vivo staining of oligodendroglia in the rabbit retina. Glia 10, 40–48 (1994).

    Article  CAS  Google Scholar 

  25. Matthias, K. et al. Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J. Neurosci. 23, 1750–1758 (2003).

    Article  CAS  Google Scholar 

  26. Grass, D. et al. Diversity of functional astroglial properties in the respiratory network. J. Neurosci. 24, 1358–1365 (2004).

    Article  CAS  Google Scholar 

  27. Diers-Fenger, M., Kirchhoff, F., Kettenmann, H., Levine, J.M. & Trotter, J. AN2/NG2 protein-expressing glial progenitor cells in the murine CNS: isolation, differentiation, and association with radial glia. Glia 34, 213–228 (2001).

    Article  CAS  Google Scholar 

  28. Wallraff, A., Odermatt, B., Willecke, K. & Steinhaeuser, C. Distinct types of astroglial cells in the hippocampus differ in gap junction coupling. Glia 48, 36–43 (2004).

    Article  Google Scholar 

  29. Wolff, J.R. & Chao, T.I. Cytoarchitectonics of non-neuronal cells in the central nervous system. in Non-Neuronal Cells in the Nervous System: Function and Dysfunction. I. Structure, Organization, Development, and Regeneration Part 1 (ed. Hertz, L.) 1–51 (Elsevier, New York, 2004).

    Google Scholar 

  30. Araque, A., Carmignoto, G. & Haydon, P.G. Dynamic signaling between astrocytes and neurons. Annu. Rev. Physiol. 63, 795–813 (2001).

    Article  CAS  Google Scholar 

  31. Verkhratsky, A. & Kettenmann, H. Calcium signalling in glial cells. Trends Neurosci. 19, 346–352 (1996).

    Article  CAS  Google Scholar 

  32. Charles, A.C., Merrill, J.E., Dirksen, E.R. & Sanderson, M.J. Intercellular signaling in glial cells—calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6, 983–992 (1991).

    Article  CAS  Google Scholar 

  33. Pasti, L., Volterra, A., Pozzan, T. & Carmignoto, G. Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J. Neurosci. 17, 7817–7830 (1997).

    Article  CAS  Google Scholar 

  34. Hirase, H., Qian, L., Bartho, P. & Buzsaki, G. Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biology 2, 494–499 (2004).

    Article  CAS  Google Scholar 

  35. Waters, J., Larkum, M., Sakmann, B. & Helmchen, F. Supralinear Ca2+ influx in dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo. J. Neurosci. 23, 8558–8567 (2003).

    Article  CAS  Google Scholar 

  36. Lichtman, J.W., Wilkinson, R.S. & Rich, M.M. Multiple innervation of tonic endplates revealed by activity-dependent uptake of fluorescent probes. Nature 314, 357–359 (1985).

    Article  CAS  Google Scholar 

  37. Keifer, J., Vyas, D. & Houk, J.C. Sulforhodamine labeling of neural circuits engaged in motor pattern generation in the in vitro turtle brainstem-cerebellum. J. Neurosci. 12, 3187–3199 (1992).

    Article  CAS  Google Scholar 

  38. Arieli, A., Shoham, D., Hildesheim, R. & Grinvald, A. Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. J. Neurophysiol. 73, 2072–2093 (1995).

    Article  CAS  Google Scholar 

  39. Petersen, C.C.H., Grinvald, A. & Sakmann, B. Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions. J. Neurosci. 23, 1298–1309 (2003).

    Article  CAS  Google Scholar 

  40. Safranyos, R.G.A., Caveney, S., Miller, J.G. & Petersen, N.O. Relative roles of gap junction channels and cytoplasm in cell-to-cell diffusion of fluorescent tracers. Proc. Natl. Acad. Sci. USA 84, 2272–2276 (1987).

    Article  CAS  Google Scholar 

  41. Willis, C.L. et al. Focal astrocyte loss is followed by microvascular damage, with subsequent repair of the blood-brain barrier in the apparent absence of direct astrocytic contact. Glia 45, 325–337 (2004).

    Article  Google Scholar 

  42. Kim, J. et al. Sindbis vector SINrep(nsP2S(726)): a tool for rapid heterologous expression with attenuated cytotoxicity in neurons. J. Neurosci. Methods 133, 81–90 (2004).

    Article  CAS  Google Scholar 

  43. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  Google Scholar 

  44. Ullian, E.M., Sapperstein, S.K., Christopherson, K.S. & Barres, B.A. Control of synapse number by glia. Science 291, 657–661 (2001).

    Article  CAS  Google Scholar 

  45. Parpura, V. et al. Glutamate-mediated astrocyte neuron signaling. Nature 369, 744–747 (1994).

    Article  CAS  Google Scholar 

  46. Nedergaard, M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263, 1768–1771 (1994).

    Article  CAS  Google Scholar 

  47. Kleinfeld, D. & Denk, W. Two-photon imaging of neocortical microcirculation. in Imaging Neurons: A Laboratory Manual (eds. Yuste, R., Lanni, F. & Konnerth, A.) 23.1–23.15 (Cold Spring Harbor Press, Cold Spring Harbor, New York, USA, 1999).

    Google Scholar 

Download references

Acknowledgements

We thank J.R. Wolff for comments on the manuscript, S. Jung and D.R. Littman for providing the green fluorescent microglial mouse line, M. Kaiser for expert technical assistance, V. Grinevich for help with the antibody staining and B. Sakmann for generous support. A.N. was supported by a predoctoral fellowship of the Boehringer Ingelheim Fonds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritjof Helmchen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

SR101 staining shows no signs of acute or long-term phototoxicity and can be applied repeatedly. (PDF 1896 kb)

Supplementary Table 1

Quantitative comparison between the Texas Red-hydrazide (SR101-fixable analog) and the counter-immunostains in vitro. (PDF 17 kb)

Supplementary Table 2

Quantitative comparison between SR101-labeled and EGFP-expressing cells in the transgenic mice in vivo. (PDF 15 kb)

Supplementary Methods (PDF 22 kb)

Supplementary Video 1

Three-dimensional distribution of SR101 labeled cells in mouse neocortex in vivo. The images are maximum-intensity side-projections from a stack of fluorescence images recorded approximately 30 minutes after dye application. Individual focal planes were recorded in 3 μm steps starting from the pia surface down to 705 μm depth. (AVI 480 kb)

Supplementary Video 2

SR101 uptake in EGFP-expressing astrocytes in TgN(GFAP-EGFP) mice. The focus series is an overlay of the simultaneously recorded green and red fluorescence images of EGFP-expressing astrocytes and SR101 labeled cells, respectively. Images are 103 μm on side and were recorded approximately 310 μm below the pia with 1.0 μm axial spacing. (AVI 336 kb)

Supplementary Video 3

SR101 is not taken up by EGFP-expressing microglial cells in CX3CR1-deficient mice. The focus series is an overlay of the simultaneously recorded green and red fluorescence images showing no overlap of microglial and SR101-labeled cells. Images are 103 μm on side and were recorded approximately 140 μm below the pia with 1.0 μm axial spacing. (AVI 690 kb)

Supplementary Video 4

Focus series demonstrating the close association between SR101 labeled cells (shown in green) and the cortical microvasculature (shown in red). Blood plasma was stained using a tail vein injection of FITC-labeled dextran. SR101 labeling was achieved using surface application of the dye. The endothelial sheet surrounding the blood vessels is visible as a dark gap (unstained area) between end feet and labeled vessel lumen. Images are 87 μm on side and were recorded starting from 110 μm below the pia in axial steps of 1.0 μm. (AVI 543 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nimmerjahn, A., Kirchhoff, F., Kerr, J. et al. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods 1, 31–37 (2004). https://doi.org/10.1038/nmeth706

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth706

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing