Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A proteome chip approach reveals new DNA damage recognition activities in Escherichia coli

Abstract

Despite the fact that many genomes have been decoded, proteome chips comprising individually purified proteins have been reported only for budding yeast, mainly because of the complexity and difficulty of high-throughput protein purification. To facilitate proteomics studies in prokaryotes, we have developed a high-throughput protein purification protocol that allowed us to purify 4,256 proteins encoded by the Escherichia coli K12 strain within 10 h. The purified proteins were then spotted onto glass slides to create E. coli proteome chips. We used these chips to develop assays for identifying proteins involved in the recognition of potential base damage in DNA. By using a group of DNA probes, each containing a mismatched base pair or an abasic site, we found a small number of proteins that could recognize each type of probe with high affinity and specificity. We further evaluated two of these proteins, YbaZ and YbcN, by biochemical analyses. The assembly of libraries containing DNA probes with specific modifications and the availability of E. coli proteome chips have the potential to reveal important interactions between proteins and nucleic acids that are time-consuming and difficult to detect using other techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An E. coli proteome chip.
Figure 2: Design of the DNA probes.
Figure 3: Identification of YbcN and YbaZ.
Figure 4: Base-flipping assay of YbcN and YbaZ.

Similar content being viewed by others

References

  1. Zhu, H. et al. Global analysis of protein activities using proteome chips. Science 293, 2101–2105 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. MacBeath, G. & Schreiber, S.L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000).

    CAS  PubMed  Google Scholar 

  3. Zhu, H. & Snyder, M. Protein chip technology. Curr. Opin. Chem. Biol. 7, 55–63 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Michaud, G.A. et al. Analyzing antibody specificity with whole proteome microarrays. Nat. Biotechnol. 21, 1509–1512 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Gelperin, D.M. et al. Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev. 19, 2816–2826 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carinci, F. et al. P-15 cell-binding domain derived from collagen: analysis of MG63 osteoblastic-cell response by means of a microarray technology. J. Periodontol. 75, 66–83 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Espejo, A., Cote, J., Bednarek, A., Richard, S. & Bedford, M.T. A protein-domain microarray identifies novel protein-protein interactions. Biochem. J. 367, 697–702 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lueking, A. et al. A nonredundant human protein chip for antibody screening and serum profiling. Mol. Cell. Proteomics 2, 1342–1349 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Ge, H. UPA, a universal protein array system for quantitative detection of protein-protein, protein-DNA, protein-RNA and protein-ligand interactions. Nucleic Acids Res. 28, e3 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Davies, D.H. et al. Profiling the humoral immune response to infection by using proteome microarrays: high-throughput vaccine and diagnostic antigen discovery. Proc. Natl. Acad. Sci. USA 102, 547–552 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hall, D.A. et al. Regulation of gene expression by a metabolic enzyme. Science 306, 482–484 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Huang, J. et al. Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc. Natl. Acad. Sci. USA 101, 16594–16599 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ptacek, J. et al. Global analysis of protein phosphorylation in yeast. Nature 438, 679–684 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Kitagawa, M. et al. Complete set of ORF clones of Escherichia coli ASKA library (A Complete Set of E. coli K-12 ORF Archive): unique resources for biological research. DNA Res. 12, 291–299 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Wood, R.D., Mitchell, M., Sgouros, J. & Lindahl, T. Human DNA repair genes. Science 291, 1284–1289 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Roberts, R.J. & Cheng, X. Base flipping. Annu. Rev. Biochem. 67, 181–198 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Verdine, G.L. & Bruner, S.D. How do DNA repair proteins locate damaged bases in the genome? Chem. Biol. 4, 329–334 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Phizicky, E., Bastiaens, P.I., Zhu, H., Snyder, M. & Fields, S. Protein analysis on a proteomic scale. Nature 422, 208–215 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Templin, M.F. et al. Protein microarrays: promising tools for proteomic research. Proteomics 3, 2155–2166 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Haushalter, K.A., Stukenberg, P.T., Kirschner, M.W. & Verdine, G.L. Identification of a new uracil-DNA glycosylase family by expression cloning using synthetic inhibitors. Curr. Biol. 9, 174–185 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. MacBeath, G. Protein microarrays and proteomics. Nat. Genet. 32 Suppl., 526–532 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Arenkov, P. et al. Protein microchips: use for immunoassay and enzymatic reactions. Anal. Biochem. 278, 123–131 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Cheng, X. & Roberts, R.J. AdoMet-dependent methylation, DNA methyltransferases and base flipping. Nucleic Acids Res. 29, 3784–3795 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Verdine, G.L. The flip side of DNA methylation. Cell 76, 197–200 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Hornby, D.P. & Ford, G.C. Protein-mediated base flipping. Curr. Opin. Biotechnol. 9, 354–358 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Labahn, J. et al. Structural basis for the excision repair of alkylation-damaged DNA. Cell 86, 321–329 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Duguid, E.M., Mishina, Y. & He, C. How do DNA repair proteins locate potential base lesions? A chemical crosslinking method to investigate O6-alkylguanine-DNA alkyltransferases. Chem. Biol. 10, 827–835 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Phadtare, S. & Severinov, K. Nucleic acid melting by Escherichia coli CspE. Nucleic Acids Res. 33, 5583–5590 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matsui, H., Shimaoka, M., Kawasaki, H., Takenaka, Y. & Kurahashi, O. Adenine deaminase activity of the yicP gene product of Escherichia coli. Biosci. Biotechnol. Biochem. 65, 1112–1118 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Jones, R.B., Gordus, A., Krall, J.A. & MacBeath, G. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439, 168–174 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Zhu, J. et al. RNA-binding proteins that inhibit RNA virus infection. Proc. Natl. Acad. Sci. USA 104, 3129–3134 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pearson, S.J., Ferguson, J., Santibanez-Koref, M. & Margison, G.P. Inhibition of O6-methylguanine-DNA methyltransferase by an alkyltransferase-like protein from Escherichia coli. Nucleic Acids Res. 33, 3837–3844 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mishina, Y., Duguid, E.M. & He, C. Direct reversal of DNA alkylation damage. Chem. Rev. 106, 215–232 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mendonca, V.M., Kaiser-Rogers, K. & Matson, S.W. Double helicase II (uvrD)-helicase IV (helD) deletion mutants are defective in the recombination pathways of Escherichia coli. J. Bacteriol. 175, 4641–4651 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tao, S.C. & Zhu, H. Protein chip fabrication by capture of nascent polypeptides. Nat. Biotechnol. 24, 1253–1254 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Ramachandran, N. et al. Self-assembling protein microarrays. Science 305, 86–90 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Mori (Nara Institute of Science and Technology, Japan) for providing the E. coli ORF collection, A. Osterman for help, C.L. Woodard for reviewing this manuscript, and D. McClellan for editorial assistance. This work was supported in part by the National Institutes of Health (grant GM071440 to C.H.; U54 RR020839 to H.Z.), the W. M. Keck Foundation (to C.H.), the Arnold and Mabel Beckman Foundation (to C.H.) and the Research Corporation (to C.H.).

Author information

Authors and Affiliations

Authors

Contributions

C.-S.C. developed the high-throughput protein purification protocol, printed chips, performed chip assays, analyzed chip assay data and wrote the manuscript. E.K. made the DNA probes, analyzed chip assay data, and performed the base-flipping assays and electrophoretic mobility shift assays with the help of H.C. and X.J. J.Z. measured the Kd and helped purify proteins. S.-C.T. helped purify proteins and print chips. C.H. and H.Z. planned the project and wrote the manuscript.

Corresponding authors

Correspondence to Chuan He or Heng Zhu.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1 and 2, Supplementary Methods and Supplementary Protocols (PDF 2413 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CS., Korobkova, E., Chen, H. et al. A proteome chip approach reveals new DNA damage recognition activities in Escherichia coli. Nat Methods 5, 69–74 (2008). https://doi.org/10.1038/nmeth1148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth1148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing