Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Decoding protein modifications using top-down mass spectrometry

Abstract

Top-down mass spectrometry is an emerging technology which strives to preserve the post-translationally modified forms of proteins present in vivo by measuring them intact, rather than measuring peptides produced from them by proteolysis. The top-down technology is beginning to capture the interest of biologists and mass spectrometrists alike, with a main goal of deciphering interaction networks operative in cellular pathways. Here we outline recent approaches and applications of top-down mass spectrometry as well as an outlook for its future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The use of top-down MS for PTM detection: top-down characterization of a hypothetical protein and its PTMs from different cell states.
Figure 2: Classical versus electron-based methods for fragmentation of protein and peptide ions in tandem mass spectrometry.
Figure 3: The complexities of precisely characterizing eukaryotic proteins.

Similar content being viewed by others

References

  1. Kelleher, N.L. et al. Top down versus bottom up protein characterization by tandem high-resolution mass spectrometry. J. Am. Chem. Soc. 121, 806–812 (1999).

    Article  CAS  Google Scholar 

  2. McLafferty, F.W., Fridriksson, E.K., Horn, D.M., Lewis, M.A. & Zubarev, R.A. Biochemistry: biomolecule mass spectrometry. Science 284, 1289–1290 (1999).

    Article  CAS  Google Scholar 

  3. Reid, G.E. & McLuckey, S.A. 'Top down' protein characterization via tandem mass spectrometry. J. Mass Spectrom. 37, 663–675 (2002).

    Article  CAS  Google Scholar 

  4. Kelleher, N.L. Top down proteomics. Anal. Chem. 76, 197A–203A (2004).

    Article  Google Scholar 

  5. Bogdanov, B. & Smith, R.D. Proteomics by FTICR mass spectrometry: top down and bottom up. Mass Spectrom. Rev. 24, 168–200 (2005).

    Article  CAS  Google Scholar 

  6. McLafferty, F.W. High resolution tandem FT mass spectrometry above 10 kDa. Acc. Chem. Res. 27, 379–386 (1994).

    Article  CAS  Google Scholar 

  7. Kelleher, N.L., Costello, C.A., Begley, T.P. & McLafferty, F.W. Thiaminase I (42 kDa) heterogeneity, sequence refinement, and active site location from high-resolution tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 6, 981–984 (1995).

    Article  CAS  Google Scholar 

  8. Meng, F. et al. Processing complex mixtures of intact proteins for direct analysis by mass spectrometry. Anal. Chem. 74, 2923–2929 (2002).

    Article  CAS  Google Scholar 

  9. Meng, F. et al. Molecular-level description of proteins from Saccharomyces cerevisiae using quadrupole FT hybrid mass spectrometry for top down proteomics. Anal. Chem. 76, 2852–2858 (2004).

    Article  CAS  Google Scholar 

  10. Patrie, S.M. et al. Top down mass spectrometry of <60 kDa proteins from Methanosarcina acetivorans using quadrupole FTMS with automated octapole collisionally activated dissociation. Mol. Cell. Proteomics 5, 14–25 (2006).

    Article  CAS  Google Scholar 

  11. Pesavento, J.J., Mizzen, C.A. & Kelleher, N.L. Quantitative analysis of modified proteins and their positional isomers by tandem mass spectrometry: human histone H4. Anal. Chem. 78, 4271–4280 (2006).

    Article  CAS  Google Scholar 

  12. Zabrouskov, V. et al. Stepwise deamidation of ribonuclease A at five sites determined by top down mass spectrometry. Biochemistry 45, 987–992 (2006).

    Article  CAS  Google Scholar 

  13. Reiber, D.C., Grover, T.A. & Brown, R.S. Identifying proteins using matrix-assisted laser desorption/ionization in-source fragmentation data combined with database searching. Anal. Chem. 70, 673–683 (1998).

    Article  CAS  Google Scholar 

  14. Ogorzalek Loo, R.R. et al. Virtual 2-D gel electrophoresis: visualization and analysis of the E. coli proteome by mass spectrometry. Anal. Chem. 73, 4063–4070 (2001).

    Article  Google Scholar 

  15. Johnson, J.R., Meng, F., Forbes, A.J., Cargile, B.J. & Kelleher, N.L. Fourier-transform mass spectrometry for automated fragmentation and identification of 5–20 kDa proteins in mixtures. Electrophoresis 23, 3217–3223 (2002).

    Article  CAS  Google Scholar 

  16. Sharma, S. et al. Proteomic profiling of intact protein using WAX-RPLC 2-D separations and FTICR mass spectrometry. J. Proteome Res. 6, 602–610 (2007).

    Article  CAS  Google Scholar 

  17. Zhou, F. & Johnston, M.V. Protein profiling by capillary isoelectric focusing, reversed-phase liquid chromatography, and mass spectrometry. Electrophoresis 26, 1383–1388 (2005).

    Article  CAS  Google Scholar 

  18. Chong, B.E., Yan, F., Lubman, D.M. & Miller, F.R. Chromatofocusing nonporous reversed-phase high-performance liquid chromatography/electrospray ionization time-of-flight mass spectrometry of proteins from human breast cancer whole cell lysates: a novel two-dimensional liquid chromatography/mass spectrometry method. Rapid Commun. Mass Spectrom. 15, 291–296 (2001).

    Article  CAS  Google Scholar 

  19. Zhao, J. et al. Proteomic analysis of estrogen response of premalignant human breast cells using a 2-D liquid separation/mass mapping technique. Proteomics 6, 3847–3861 (2006).

    Article  CAS  Google Scholar 

  20. Nemeth-Cawley, J.F. & Rouse, J.C. Identification and sequencing analysis of intact proteins via collision-induced dissociation and quadrupole time-of-flight mass spectrometry. J. Mass Spectrom. 37, 270–282 (2002).

    Article  CAS  Google Scholar 

  21. Roth, M.J. et al. Precise and parallel characterization of coding polymorphisms, alternative splicing and modifications in human proteins by mass spectrometry. Mol. Cell. Proteomics 4, 1002–1008 (2005).

    Article  CAS  Google Scholar 

  22. Hu, Q. et al. The Orbitrap: a new mass spectrometer. J. Mass Spectrom. 40, 430–443 (2005).

    Article  CAS  Google Scholar 

  23. Scigelova, M. & Makarov, A. Orbitrap mass analyzer - overview and applications in proteomics. Proteomics 6 (suppl. 2), 16–21 (2006).

    Article  Google Scholar 

  24. Zubarev, R., Kelleher, N. & McLafferty, F. Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 120, 3265–3266 (1998).

    Article  CAS  Google Scholar 

  25. Syka, J.E., Coon, J.J., Schroeder, M.J., Shabanowitz, J. & Hunt, D.F. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. USA 101, 9528–9533 (2004).

    Article  CAS  Google Scholar 

  26. Coon, J.J. et al. Protein identification using sequential ion/ion reaction and tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 102, 9463–9468 (2005).

    Article  CAS  Google Scholar 

  27. Reid, G.E., Shang, H., Hogan, J.M., Lee, G.U. & McLuckey, S.A. Gas-phase concentration, purification, and identification of whole proteins from complex mixtures. J. Am. Chem. Soc. 124, 7353–7362 (2002).

    Article  CAS  Google Scholar 

  28. Cargile, B.J., McLuckey, S.A. & Stephenson, J.L., Jr. Identification of bacteriophage MS2 coat protein from E. coli lysates via ion trap collisional activation of intact protein ions. Anal. Chem. 73, 1277–1285 (2001).

    Article  CAS  Google Scholar 

  29. Chi, A., Bai, D.L., Geer, L.Y., Shabanowitz, J. & Hunt, D.F. Analysis of intact proteins on a chromatographic time scale by electron transfer dissociation tandem mass spectrometry. Int. J. Mass Spectrom. 259, 197–203 (2007).

    Article  CAS  Google Scholar 

  30. Amunugama, R., Hogan, J.M., Newton, K.A. & McLuckey, S.A. Whole protein dissociation in a quadrupole ion trap: identification of an a priori unknown modified protein. Anal. Chem. 76, 720–727 (2004).

    Article  CAS  Google Scholar 

  31. Kelleher, N.L. et al. Localization of labile post-translational modifications by electron capture dissociation: the case of γ-carboxyglutamic acid. Anal. Chem. 71, 4250–4253 (1999).

    Article  CAS  Google Scholar 

  32. Meng, F. et al. Informatics and multiplexing of intact protein identification in bacteria and the archaea. Nat. Biotechnol. 19, 952–957 (2001).

    Article  CAS  Google Scholar 

  33. Reid, G.E., Stephenson, J.L., Jr. & McLuckey, S.A. Tandem mass spectrometry of ribonuclease A and B: N-linked glycosylation site analysis of whole protein ions. Anal. Chem. 74, 577–583 (2002).

    Article  CAS  Google Scholar 

  34. Han, X., Jin, M., Breuker, K. & McLafferty, F.W. Extending top down mass spectrometry to proteins with masses greater than 200 kilodaltons. Science 314, 109–112 (2006).

    Article  CAS  Google Scholar 

  35. Chi, A. et al. Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc. Natl. Acad. Sci. USA 104, 2193–2198 (2007).

    Article  CAS  Google Scholar 

  36. Taylor, G.K. et al. Web and database software for identification of intact proteins using top down mass spectrometry. Anal. Chem. 75, 4081–4086 (2003).

    Article  CAS  Google Scholar 

  37. LeDuc, R.D. et al. ProSight PTM: an integrated environment for protein identification and characterization by top-down mass spectrometry. Nucleic Acids Res. [online] 32, W340–W345 (2004).

    Article  CAS  Google Scholar 

  38. Pesavento, J.J., Kim, Y.B., Taylor, G.K. & Kelleher, N.L. Shotgun annotation of histone modifications: a new approach for streamlined characterization of proteins by top down mass spectrometry. J. Am. Chem. Soc. 126, 3386–3387 (2004).

    Article  CAS  Google Scholar 

  39. Boyne, M.T., II, Pesavento, J.J., Mizzen, C.A. & Kelleher, N.L. Precise characterization of human histones in the H2A gene family by top down mass spectrometry. J. Proteome Res. 5, 248–253 (2006).

    Article  CAS  Google Scholar 

  40. Siuti, N., Roth, M.J., Mizzen, C.A., Kelleher, N.L. & Pesavento, J.J. Gene-specific characterization of human histone H2B by electron capture dissociation. J. Proteome Res. 5, 233–239 (2006).

    Article  CAS  Google Scholar 

  41. Medzihradszky, K.F. et al. Characterization of Tetrahymena histone H2B variants and posttranslational populations by electron capture dissociation (ECD) Fourier transform ion cyclotron mass spectrometry (FT-ICR MS). Mol. Cell. Proteomics 3, 872–886 (2004).

    Article  CAS  Google Scholar 

  42. Thomas, C.E., Kelleher, N.L. & Mizzen, C.A. Mass spectrometric characterization of human histone H3: a bird's eye view. J. Proteome Res. 5, 240–247 (2006).

    Article  CAS  Google Scholar 

  43. Garcia, B.A., Pesavento, J.J., Mizzen, C.A. & Kelleher, N.L. Pervasive combinatorial modification of histone H3 in human cells. Nat. Methods 4, 487–489 (2007).

    Article  CAS  Google Scholar 

  44. Taverna, S.D. et al. Long-distance combinatorial linkage between methylation and acetylation on histone H3 N termini. Proc. Natl. Acad. Sci. USA 104, 2086–2091 (2007).

    Article  CAS  Google Scholar 

  45. Whitelegge, J., Halgand, F., Souda, P. & Zabrouskov, V. Top down mass spectrometry of integral membrane proteins. Expert Rev. Proteomics 3, 585–596 (2006).

    Article  CAS  Google Scholar 

  46. Gomez, S.M. et al. Transit peptide cleavage sites of integral thylakoid membrane proteins. Mol. Cell. Proteomics 2, 1068–1085 (2003).

    Article  CAS  Google Scholar 

  47. Macek, B., Waanders, L.F., Olsen, J.V. & Mann, M. Top down protein sequencing and MS3 on a hybrid linear quadrupole ion trap-Orbitrap mass spectrometer. Mol. Cell. Proteomics 5, 949–958 (2006).

    Article  CAS  Google Scholar 

  48. Zabrouskov, V., Senko, M.W., Du, Y., LeDuc, R.D. & Kelleher, N.L. New and automated MSn approaches for top down identification of modified proteins. J. Am. Soc. Mass Spectrom. 16, 2027–2038 (2005).

    Article  CAS  Google Scholar 

  49. Parks, B.A. et al. An online method for top down proteomics using an LTQ-FTICR. Anal. Chem. (in the press).

Download references

Acknowledgements

Without funding from the University of Illinois, the National Institutes of Health (GM 067193), the Packard Foundation, the Alfred P. Sloan Foundation, the Dreyfus Foundation, the Roy J. Carver Charitable Trust (04-76) and the Institute of Genomic Biology, this review would not have been possible. All these sources of support have driven the advance of top-down proteomics at the University of Illinois over the past seven years.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Thermo Fisher holds the licensing rights for distribution of ProSightPC software.

ProSight is available publicly as ProSight PTM (https://prosightptm.scs.uiuc.edu) or through Thermo Fisher as ProSightPC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siuti, N., Kelleher, N. Decoding protein modifications using top-down mass spectrometry. Nat Methods 4, 817–821 (2007). https://doi.org/10.1038/nmeth1097

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth1097

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing