Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bright far-red fluorescent protein for whole-body imaging


For deep imaging of animal tissues, the optical window favorable for light penetration is in near-infrared wavelengths, which requires proteins with emission spectra in the far-red wavelengths. Here we report a far-red fluorescent protein, named Katushka, which is seven- to tenfold brighter compared to the spectrally close HcRed or mPlum, and is characterized by fast maturation as well as a high pH-stability and photostability. These unique characteristics make Katushka the protein of choice for visualization in living tissues. We demonstrate superiority of Katushka for whole-body imaging by direct comparison with other red and far-red fluorescent proteins. We also describe a monomeric version of Katushka, named mKate, which is characterized by high brightness and photostability, and should be an excellent fluorescent label for protein tagging in the far-red part of the spectrum.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Spectral characteristics.
Figure 2: Comparison in X. laevis embryos.
Figure 3: Photobleaching experiments in living HeLa cells.


  1. 1

    Chapman, S., Oparka, K.J. & Roberts, A.G. New tools for in vivo fluorescence tagging. Curr. Opin. Plant Biol. 8, 565–573 (2005).

    CAS  Article  Google Scholar 

  2. 2

    Chudakov, D.M., Lukyanov, S. & Lukyanov, K.A. Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol. 23, 605–613 (2005).

    CAS  Article  Google Scholar 

  3. 3

    Hoffman, R.M. Advantages of multi-color fluorescent proteins for whole-body and in vivo cellular imaging. J. Biomed. Opt. 10, 41202 (2005).

    Article  Google Scholar 

  4. 4

    Passamaneck, Y.J., Di Gregorio, A., Papaioannou, V.E. & Hadjantonakis, A.K. Live imaging of fluorescent proteins in chordate embryos: from ascidians to mice. Microsc. Res. Tech. 69, 160–167 (2006).

    Article  Google Scholar 

  5. 5

    Stewart, C.N., Jr. Go with the glow: fluorescent proteins to light transgenic organisms. Trends Biotechnol. 24, 155–162 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Seitz, G. et al. Visualization of xenotransplanted human rhabdomyosarcoma after transfection with red fluorescent protein. J. Pediatr. Surg. 41, 1369–1376 (2006).

    Article  Google Scholar 

  7. 7

    Wacker, S.A., Oswald, F., Wiedenmann, J. & Knochel, W. A green to red photoconvertible protein as an analyzing tool for early vertebrate development. Dev. Dyn. 236, 473–480 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Lukyanov, K.A., Chudakov, D.M., Lukyanov, S. & Verkhusha, V.V. Innovation: photoactivatable fluorescent proteins. Nat. Rev. Mol. Cell. Biol. 6, 885–891 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Chudakov, D.M. et al. Kindling fluorescent proteins for precise in vivo photolabeling. Nat. Biotechnol. 21, 191–194 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Stark, D.A. & Kulesa, P.M. An in vivo comparison of photoactivatable fluorescent proteins in an avian embryo model. Dev. Dyn. 236, 1583–1594 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Bertera, S. et al. Body window-enabled in vivo multicolor imaging of transplanted mouse islets expressing an insulin-Timer fusion protein. Biotechniques 35, 718–722 (2003).

    CAS  Article  Google Scholar 

  12. 12

    Mirabella, R., Franken, C., van der Krogt, G.N., Bisseling, T. & Geurts, R. Use of the fluorescent timer DsRED-E5 as reporter to monitor dynamics of gene activity in plants. Plant Physiol. 135, 1879–1887 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Konig, K. Multiphoton microscopy in life sciences. J. Microsc. 200, 83–104 (2000).

    CAS  Article  Google Scholar 

  14. 14

    Gurskaya, N.G. et al. GFP-like chromoproteins as a source of far-red fluorescent proteins. FEBS Lett. 507, 16–20 (2001).

    CAS  Article  Google Scholar 

  15. 15

    Wang, L., Jackson, W.C., Steinbach, P.A. & Tsien, R.Y. Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc. Natl. Acad. Sci. USA 101, 16745–16749 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Shkrob, M.A. et al. Far-red fluorescent proteins evolved from a blue chromoprotein from Actinia equina. Biochem. J. 392, 649–654 (2005).

    CAS  Article  Google Scholar 

  17. 17

    Merzlyak, E.M. et al. Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat. Methods 4, 555–557 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Petersen, J. et al. The 2.0-A crystal structure of eqFP611, a far red fluorescent protein from the sea anemone Entacmaea quadricolor. J. Biol. Chem. 278, 44626–44631 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Wiedenmann, J. et al. Red fluorescent protein eqFP611 and its genetically engineered dimeric variants. J. Biomed. Opt. 10, 14003 (2005).

    Article  Google Scholar 

  20. 20

    Mohun, T.J., Garrett, N. & Gurdon, J.B. Upstream sequences required for tissue-specific activation of the cardiac actin gene in Xenopus laevis embryos. EMBO J. 5, 3185–3193 (1986).

    CAS  Article  Google Scholar 

  21. 21

    Nieuwkoop, P.D. & Faber, J. Normal Table of Xenopus laevis (Daudin). (Elsevier, Amsterdam, 1967).

  22. 22

    Martynova, N. et al. Patterning the forebrain: FoxA4a/Pintallavis and Xvent2 determine the posterior limit of Xanf1 expression in the neural plate. Development 131, 2329–2338 (2004).

    CAS  Article  Google Scholar 

  23. 23

    Ermakova, G.V., Solovieva, E.A., Martynova, N.Y. & Zaraisky, A.G. The homeodomain factor Xanf represses expression of genes in the presumptive rostral forebrain that specify more caudal brain regions. Dev. Biol. 307, 483–497 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    CAS  Article  Google Scholar 

  25. 25

    Rizzo, M.A., Springer, G.H., Granada, B. & Piston, D.W. An improved cyan fluorescent protein variant useful for FRET. Nat. Biotechnol. 22, 445–449 (2004).

    CAS  Article  Google Scholar 

  26. 26

    Yanushevich, Y.G. et al. A strategy for the generation of nonaggregating mutants of Anthozoa fluorescent proteins. FEBS Lett. 511, 11–14 (2002).

    CAS  Article  Google Scholar 

  27. 27

    Terskikh, A.V., Fradkov, A.F., Zaraisky, A.G., Kajava, A.V. & Angres, B. Analysis of DsRed mutants Space around the fluorophore accelerates fluorescence development. J. Biol. Chem. 277, 7633–7636 (2002).

    CAS  Article  Google Scholar 

  28. 28

    Bevis, B.J. & Glick, B.S. Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat. Biotechnol. 20, 83–87 (2002).

    CAS  Article  Google Scholar 

  29. 29

    Wiedenmann, J. et al. A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria). Proc. Natl. Acad. Sci. USA 99, 11646–11651 (2002).

    CAS  Article  Google Scholar 

Download references


We thank N.E. Yelina (University of East Anglia, UK) for critical reading of the manuscript. Supported by grants from Howard Hughes Medical Institute 55005618, Molecular and Cell Biology, Russian Academy of Sciences, European Commission FP-6 Integrated Project LSHG-CT-2003-503259, Russian Foundation of Basic Research 07-04-12189 and the US National Institutes of Health GM070358. D.M.C. and K.A.L. are supported by Grant of the President of Russian Federation MK-8236.2006.4, and Russian Science Support Foundation. Partially supported by grants from Howard Hughes Medical Institute 55005630, MCB Russian Academy of Sciences, Russian Foundation of Basic Research 07-04-00466 and Civilian Research and Development Foundation RUB1-2826-MO-06 to A.G.Z.

Author information




D.S., E.M.M., T.V.C. and A.F.F. developed Katushka and mKate and characterized the proteins in vitro and in living cells. G.V.E., E.A.S. and A.G.Z. performed experiments with X. laevis and contributed to the writing of the manuscript. E.A.B., K.A.L., S.L. and D.M.C. designed and planned the project and wrote the manuscript.

Corresponding author

Correspondence to Dmitriy M Chudakov.

Ethics declarations

Competing interests

Katushka and mKate are property of Evrogen JSC, Moscow, Russia. K.A.L., S.L. and D.M.C. have interest in Evrogen JSC. E.M.M. and T.V.C. are employed by Evrogen JSC.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Methods (PDF 1455 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shcherbo, D., Merzlyak, E., Chepurnykh, T. et al. Bright far-red fluorescent protein for whole-body imaging. Nat Methods 4, 741–746 (2007).

Download citation

Further reading


Quick links